Comparative study of Moroccan stock price prediction with trend technical indicators

Abdelhadi Ifleh, Azdine Bilal, Mounime El Kabbouri
{"title":"Comparative study of Moroccan stock price prediction with trend technical indicators","authors":"Abdelhadi Ifleh, Azdine Bilal, Mounime El Kabbouri","doi":"10.3233/his-230002","DOIUrl":null,"url":null,"abstract":"Predicting future prices is challenging for both scholars and traders due to the high frequency and complexity of stock markets (SMs). The efficient market hypothesis (EMH) states that stock prices (SPs) follow a random walk and are unpredictably fluctuating. Furthermore, the price contains all accessible data, and we can’t extrapolate profitability from previous or current data, thus technical analysis (TA) is ineffective for projecting future prices. Technical indicators (TI) are calculated using past prices, and they are divided into two categories: trend TI and oscillators. The purpose of this study is to evaluate the accuracy of predictions for three stocks traded on the Casablanca Stock Exchange (CSE): IAM, Attijari Wafa Bank (ATW), and Banque Centrale Populaire (BCP). We combined trend TI with Long Short Term Memory model (LTSM) to make predictions and compared the results to the Random Forest model (RF). We also use Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) to assess prediction accuracy. As a result, LSTM outperforms the RF model in terms of prediction.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":"25 1","pages":"15-26"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/his-230002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting future prices is challenging for both scholars and traders due to the high frequency and complexity of stock markets (SMs). The efficient market hypothesis (EMH) states that stock prices (SPs) follow a random walk and are unpredictably fluctuating. Furthermore, the price contains all accessible data, and we can’t extrapolate profitability from previous or current data, thus technical analysis (TA) is ineffective for projecting future prices. Technical indicators (TI) are calculated using past prices, and they are divided into two categories: trend TI and oscillators. The purpose of this study is to evaluate the accuracy of predictions for three stocks traded on the Casablanca Stock Exchange (CSE): IAM, Attijari Wafa Bank (ATW), and Banque Centrale Populaire (BCP). We combined trend TI with Long Short Term Memory model (LTSM) to make predictions and compared the results to the Random Forest model (RF). We also use Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) to assess prediction accuracy. As a result, LSTM outperforms the RF model in terms of prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
趋势技术指标预测摩洛哥股票价格的比较研究
由于股票市场的高频率和复杂性,预测未来的价格对学者和交易者来说都是一个挑战。有效市场假说(EMH)指出,股票价格(SPs)遵循随机漫步,并且不可预测地波动。此外,价格包含了所有可获得的数据,我们不能从以前或当前的数据推断盈利能力,因此技术分析(TA)对于预测未来的价格是无效的。技术指标(TI)是使用过去的价格来计算的,它们分为两类:趋势TI和振荡指标。本研究的目的是评估在卡萨布兰卡证券交易所(CSE)交易的三只股票的预测准确性:IAM, Attijari Wafa Bank (ATW)和Banque Centrale Populaire (BCP)。我们结合趋势TI和长短期记忆模型(LTSM)进行预测,并将结果与随机森林模型(RF)进行比较。我们还使用均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)来评估预测的准确性。因此,LSTM在预测方面优于RF模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
Vision transformer-convolution for breast cancer classification using mammography images: A comparative study Comparative temporal dynamics of individuation and perceptual averaging using a biological neural network model Metaheuristic optimized electrocardiography time-series anomaly classification with recurrent and long-short term neural networks Classifications, evaluation metrics, datasets, and domains in recommendation services: A survey A hybrid approach of machine learning algorithms for improving accuracy of social media crisis detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1