Kernel Treelets

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2018-12-12 DOI:10.1142/S2424922X19500062
Hedi Xia, Héctor D. Ceniceros
{"title":"Kernel Treelets","authors":"Hedi Xia, Héctor D. Ceniceros","doi":"10.1142/S2424922X19500062","DOIUrl":null,"url":null,"abstract":"A new method for hierarchical clustering of data points is presented. It combines treelets, a particular multiresolution decomposition of data, with a mapping on a reproducing kernel Hilbert space. The proposed approach, called kernel treelets (KT), uses this mapping to go from a hierarchical clustering over attributes (the natural output of treelets) to a hierarchical clustering over data. KT effectively substitutes the correlation coefficient matrix used in treelets with a symmetric and positive semi-definite matrix efficiently constructed from a symmetric and positive semi-definite kernel function. Unlike most clustering methods, which require data sets to be numeric, KT can be applied to more general data and yields a multiresolution sequence of orthonormal bases on the data directly in feature space. The effectiveness and potential of KT in clustering analysis are illustrated with some examples.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"75 1","pages":"1950006:1-1950006:16"},"PeriodicalIF":0.5000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X19500062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A new method for hierarchical clustering of data points is presented. It combines treelets, a particular multiresolution decomposition of data, with a mapping on a reproducing kernel Hilbert space. The proposed approach, called kernel treelets (KT), uses this mapping to go from a hierarchical clustering over attributes (the natural output of treelets) to a hierarchical clustering over data. KT effectively substitutes the correlation coefficient matrix used in treelets with a symmetric and positive semi-definite matrix efficiently constructed from a symmetric and positive semi-definite kernel function. Unlike most clustering methods, which require data sets to be numeric, KT can be applied to more general data and yields a multiresolution sequence of orthonormal bases on the data directly in feature space. The effectiveness and potential of KT in clustering analysis are illustrated with some examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内核Treelets
提出了一种新的数据点分层聚类方法。它结合了树簇,一种特殊的多分辨率数据分解,和一个在再现核希尔伯特空间上的映射。所提出的方法称为内核树簇(KT),它使用这种映射从属性上的分层聚类(树簇的自然输出)到数据上的分层聚类。KT有效地用对称半正定核函数构造的对称半正定矩阵代替了树阵中使用的相关系数矩阵。与大多数要求数据集是数字的聚类方法不同,KT可以应用于更一般的数据,并直接在特征空间中产生基于数据的多分辨率标准正交序列。通过实例说明了KT在聚类分析中的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1