Local Feature Extraction from Salient Regions by Feature Map Transformation

Yerim Jung, Nur Suriza Syazwany, Sang-Chul Lee
{"title":"Local Feature Extraction from Salient Regions by Feature Map Transformation","authors":"Yerim Jung, Nur Suriza Syazwany, Sang-Chul Lee","doi":"10.48550/arXiv.2301.10413","DOIUrl":null,"url":null,"abstract":"Local feature matching is essential for many applications, such as localization and 3D reconstruction. However, it is challenging to match feature points accurately in various camera viewpoints and illumination conditions. In this paper, we propose a framework that robustly extracts and describes salient local features regardless of changing light and viewpoints. The framework suppresses illumination variations and encourages structural information to ignore the noise from light and to focus on edges. We classify the elements in the feature covariance matrix, an implicit feature map information, into two components. Our model extracts feature points from salient regions leading to reduced incorrect matches. In our experiments, the proposed method achieved higher accuracy than the state-of-the-art methods in the public dataset, such as HPatches, Aachen Day-Night, and ETH, which especially show highly variant viewpoints and illumination.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"24 1","pages":"552"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.10413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Local feature matching is essential for many applications, such as localization and 3D reconstruction. However, it is challenging to match feature points accurately in various camera viewpoints and illumination conditions. In this paper, we propose a framework that robustly extracts and describes salient local features regardless of changing light and viewpoints. The framework suppresses illumination variations and encourages structural information to ignore the noise from light and to focus on edges. We classify the elements in the feature covariance matrix, an implicit feature map information, into two components. Our model extracts feature points from salient regions leading to reduced incorrect matches. In our experiments, the proposed method achieved higher accuracy than the state-of-the-art methods in the public dataset, such as HPatches, Aachen Day-Night, and ETH, which especially show highly variant viewpoints and illumination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征映射变换的显著区域局部特征提取
局部特征匹配在许多应用中是必不可少的,例如定位和3D重建。然而,在不同的摄像机视点和光照条件下准确匹配特征点是一个挑战。在本文中,我们提出了一个框架,无论光线和视点如何变化,都能鲁棒地提取和描述显著的局部特征。该框架抑制光照变化,并鼓励结构信息忽略光的噪声,并将重点放在边缘上。我们将隐式特征映射信息特征协方差矩阵中的元素分为两个分量。我们的模型从显著区域提取特征点,从而减少错误匹配。在我们的实验中,所提出的方法比公共数据集中最先进的方法(如HPatches, Aachen Day-Night和ETH)获得了更高的精度,特别是显示高度变化的视点和照明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Anatomically Consistent Embedding for Chest Radiography. Single Pixel Spectral Color Constancy DiffSketching: Sketch Control Image Synthesis with Diffusion Models Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation Mitigating Bias in Visual Transformers via Targeted Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1