Revisiting frequency reuse towards supporting ultra-reliable ubiquitous-rate communication

Jihong Park, Dong-Min Kim, P. Popovski, Seong-Lyun Kim
{"title":"Revisiting frequency reuse towards supporting ultra-reliable ubiquitous-rate communication","authors":"Jihong Park, Dong-Min Kim, P. Popovski, Seong-Lyun Kim","doi":"10.23919/WIOPT.2017.7959944","DOIUrl":null,"url":null,"abstract":"One of the goals of 5G wireless systems stated by the NGMN alliance is to provide moderate rates (50+ Mbps) everywhere and with very high reliability. We term this service Ultra-Reliable Ubiquitous-Rate Communication (UR2C). This paper investigates the role of frequency reuse in supporting UR2C in the downlink. To this end, two frequency reuse schemes are considered: user-specific frequency reuse (FRu) and BS-specific frequency reuse (FRb). For a given unit frequency channel, FRu reduces the number of serving user equipments (UEs), whereas FRb directly decreases the number of interfering base stations (BSs). This increases the distance from the interfering BSs and the signal-to-interference ratio (SIR) attains ultra-reliability, e.g. 99% SIR coverage at a randomly picked UE. The ultra-reliability is, however, achieved at the cost of the reduced frequency allocation, which may degrade overall downlink rate. To fairly capture this reliability-rate tradeoff, we propose ubiquitous rate defined as the maximum downlink rate whose required SIR can be achieved with ultra-reliability. By using stochastic geometry, we derive closed-form ubiquitous rate as well as the optimal frequency reuse rules for UR2C.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"75 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

One of the goals of 5G wireless systems stated by the NGMN alliance is to provide moderate rates (50+ Mbps) everywhere and with very high reliability. We term this service Ultra-Reliable Ubiquitous-Rate Communication (UR2C). This paper investigates the role of frequency reuse in supporting UR2C in the downlink. To this end, two frequency reuse schemes are considered: user-specific frequency reuse (FRu) and BS-specific frequency reuse (FRb). For a given unit frequency channel, FRu reduces the number of serving user equipments (UEs), whereas FRb directly decreases the number of interfering base stations (BSs). This increases the distance from the interfering BSs and the signal-to-interference ratio (SIR) attains ultra-reliability, e.g. 99% SIR coverage at a randomly picked UE. The ultra-reliability is, however, achieved at the cost of the reduced frequency allocation, which may degrade overall downlink rate. To fairly capture this reliability-rate tradeoff, we propose ubiquitous rate defined as the maximum downlink rate whose required SIR can be achieved with ultra-reliability. By using stochastic geometry, we derive closed-form ubiquitous rate as well as the optimal frequency reuse rules for UR2C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视频率重用,以支持超可靠的无处不在的速率通信
NGMN联盟提出的5G无线系统的目标之一是在任何地方提供中等速率(50+ Mbps),并且具有非常高的可靠性。我们称这种服务为超可靠的全速通信(UR2C)。本文研究了频率复用在支持UR2C下行链路中的作用。为此,考虑了两种频率复用方案:用户特定频率复用(user-specific frequency reuse, FRu)和用户特定频率复用(BS-specific frequency reuse, FRb)。对于给定的单位频率信道,FRu减少服务用户设备(ue)的数量,而FRb直接减少干扰基站(BSs)的数量。这增加了与干扰BSs的距离,并且信号干扰比(SIR)达到了超可靠性,例如在随机选择的UE上达到99%的SIR覆盖率。然而,实现超可靠性的代价是减少频率分配,这可能会降低整体下行速率。为了公平地捕获这种可靠性和速率之间的权衡,我们建议将泛在速率定义为最大下行速率,其所需的SIR可以通过超可靠性实现。利用随机几何方法,导出了UR2C的闭型泛在率和最优频率复用规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker Keynote speaker Ad-Hoc, Mobile, and Wireless Networks: 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, October 19–21, 2020, Proceedings Retraction Note to: Mobility Aided Context-Aware Forwarding Approach for Destination-Less OppNets Ad-Hoc, Mobile, and Wireless Networks: 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1–3, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1