Study of the Mass Flow Rates on the Efficiency of Hybrid Thermal / Photvoltaique Sensor

Maifi Lyes, Kerbache Tahar, Hioual Ouided
{"title":"Study of the Mass Flow Rates on the Efficiency of Hybrid Thermal / Photvoltaique Sensor","authors":"Maifi Lyes, Kerbache Tahar, Hioual Ouided","doi":"10.13189/UJPA.2015.090602","DOIUrl":null,"url":null,"abstract":"Hybrid thermal/photovoltaic systems associating a solar concentrator with a heat exchanger are an effective way to improve solar energy conversion yield. We present here an analysis of the effect of the mass flow rates in such a collector. A numerical simulation of the performance of the thermal/photovoltaic sensor with a heat exchanger including fins attached to the absorber and using air as a coolant is presented. A thorough analysis of the influence of the mass flow rate on the efficiency and the working of a thermal/photovoltaic collector is presented. The analysis is made using the equations of the components of heat transfer cascade into a matrix of four unknown's which are the glass , cells, fluid and insulation plate temperature. This matrix is solved by the fixed point method and Gauss-Seidel, at the permanent regime. Results show that the overall conversion efficiency of the system is increasing from 27% to 65%, and the cell temperatures decreasing from 345°K to 335°K when mass flow rates varies from 0.02 kg/s to 0.1 kg/s.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"1 1","pages":"244-250"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJPA.2015.090602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hybrid thermal/photovoltaic systems associating a solar concentrator with a heat exchanger are an effective way to improve solar energy conversion yield. We present here an analysis of the effect of the mass flow rates in such a collector. A numerical simulation of the performance of the thermal/photovoltaic sensor with a heat exchanger including fins attached to the absorber and using air as a coolant is presented. A thorough analysis of the influence of the mass flow rate on the efficiency and the working of a thermal/photovoltaic collector is presented. The analysis is made using the equations of the components of heat transfer cascade into a matrix of four unknown's which are the glass , cells, fluid and insulation plate temperature. This matrix is solved by the fixed point method and Gauss-Seidel, at the permanent regime. Results show that the overall conversion efficiency of the system is increasing from 27% to 65%, and the cell temperatures decreasing from 345°K to 335°K when mass flow rates varies from 0.02 kg/s to 0.1 kg/s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质量流量对热/光电混合传感器效率的影响研究
将太阳能聚光器与热交换器相结合的热/光电混合系统是提高太阳能转换产量的有效方法。我们在此分析了质量流率对这种集热器的影响。本文对采用空气作为冷却剂的热交换器(包括附在吸收体上的翅片)的热/光伏传感器的性能进行了数值模拟。详细分析了质量流量对集热器效率和工作性能的影响。将传热分量的方程转化为玻璃、电池、流体和隔热板温度四个未知数的矩阵进行分析。用不动点法和高斯-塞德尔法在恒状态下求解该矩阵。结果表明,当质量流量在0.02 kg/s ~ 0.1 kg/s范围内变化时,系统的总转化效率从27%提高到65%,电池温度从345°K降低到335°K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Disk of Concave Mirrors: An Experiment of the Light with Contradictory Formulas The NOW of time and the Pioneer Anomaly Tachyons, the Four-Momentum Formalism and Simultaneity Killing Vector Fields and Conserved Currents on Rotationally Symmetric Space-time Discovery of Ambiguity in the Traditional Norms of Specifying Physical Quantities along the Axes of Coordinates in Drawing Data Based Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1