{"title":"A review of HNS-32: a novel azulene-1-carboxamidine derivative with multiple cardiovascular protective actions.","authors":"Y. Tanaka, K. Shigenobu","doi":"10.1111/J.1527-3466.2001.TB00072.X","DOIUrl":null,"url":null,"abstract":"HNS-32 [N(1),N(1)-dimethyl-N(2)-(2-pyridylmethyl)-5-isopropyl-3,8-dimethylazulene-1- carboxamidine] (CAS Registry Number: 186086-10-2) is a newly synthesized azulene derivative. Computer simulation showed that its three dimensional structure is similar to that of the class Ib antiarrhythmic drugs, e.g., lidocaine or mexiletine. HNS-32 potently suppressed ventricular arrhythmias induced by ischemia due to coronary ligation and/or ischemia-reperfusion in dogs and rats. In the isolated dog and guinea pig cardiac tissues, HNS-32 had negative inotropic and chronotropic actions, prolonged atrial-His and His-ventricular conduction time and increased coronary blood flow. In the isolated guinea pig ventricular papillary muscle, HNS-32 decreased maximal rate of action potential upstroke (Vmax) and shortened action potential duration (APD). These findings suggest that HNS-32 inhibits inward Na+ and Ca2+ channel currents. In the isolated pig coronary and rabbit conduit arteries, HNS-32 inhibited both Ca2+ channel-dependent and -independent contractions induced by a wide variety of chemical stimuli. HNS-32 is a potent inhibitor of protein kinase C (PKC)-mediated constriction of cerebral arteries. It is likely to block both, Na+ and Ca2+ channels expressed in cardiac and vascular smooth muscles. These multiple ion channel blocking effects are largely responsible for the antiarrhythmic and vasorelaxant actions of HNS-32. This drug may represent a novel approach to the treatment of arrhythmias.","PeriodicalId":9490,"journal":{"name":"Cardiovascular drug reviews","volume":"41 1","pages":"297-312"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular drug reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1527-3466.2001.TB00072.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
HNS-32 [N(1),N(1)-dimethyl-N(2)-(2-pyridylmethyl)-5-isopropyl-3,8-dimethylazulene-1- carboxamidine] (CAS Registry Number: 186086-10-2) is a newly synthesized azulene derivative. Computer simulation showed that its three dimensional structure is similar to that of the class Ib antiarrhythmic drugs, e.g., lidocaine or mexiletine. HNS-32 potently suppressed ventricular arrhythmias induced by ischemia due to coronary ligation and/or ischemia-reperfusion in dogs and rats. In the isolated dog and guinea pig cardiac tissues, HNS-32 had negative inotropic and chronotropic actions, prolonged atrial-His and His-ventricular conduction time and increased coronary blood flow. In the isolated guinea pig ventricular papillary muscle, HNS-32 decreased maximal rate of action potential upstroke (Vmax) and shortened action potential duration (APD). These findings suggest that HNS-32 inhibits inward Na+ and Ca2+ channel currents. In the isolated pig coronary and rabbit conduit arteries, HNS-32 inhibited both Ca2+ channel-dependent and -independent contractions induced by a wide variety of chemical stimuli. HNS-32 is a potent inhibitor of protein kinase C (PKC)-mediated constriction of cerebral arteries. It is likely to block both, Na+ and Ca2+ channels expressed in cardiac and vascular smooth muscles. These multiple ion channel blocking effects are largely responsible for the antiarrhythmic and vasorelaxant actions of HNS-32. This drug may represent a novel approach to the treatment of arrhythmias.