Tam Thanh Doan, R. Safavi-Naini, Shuai Li, S. Avizheh, Muni Venkateswarlu K., Philip W. L. Fong
{"title":"Towards a Resilient Smart Home","authors":"Tam Thanh Doan, R. Safavi-Naini, Shuai Li, S. Avizheh, Muni Venkateswarlu K., Philip W. L. Fong","doi":"10.1145/3229565.3229570","DOIUrl":null,"url":null,"abstract":"Today's Smart Home platforms such as Samsung SmartThings and Amazon AWS IoT are primarily cloud based: devices in the home sense the environment and send the collected data, directly or through a hub, to the cloud. Cloud runs various applications and analytics on the collected data, and generates commands according to the users' specifications that are sent to the actuators to control the environment. The role of the hub in this setup is effectively message passing between the devices and the cloud, while the required analytics, computation, and control are all performed by the cloud. We ask the following question: what if the cloud is not available? This can happen not only by accident or natural causes, but also due to targeted attacks. We discuss possible effects of such unavailability on the functionalities that are commonly available in smart homes, including security and safety related services as well as support for health and well-being of home users, and propose RES-Hub, a hub that can provide the required functionalities when the cloud is unavailable. During the normal functioning of the system, RES-Hub will receive regular status updates from cloud, and will use this information to continue to provide the user specified services when it detects the cloud is down. We describe an IoTivity-based software architecture that is used to implement RES-Hub in a flexible and expendable way and discuss our implementation.","PeriodicalId":20541,"journal":{"name":"Proceedings of the 2018 Workshop on IoT Security and Privacy","volume":"158 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Workshop on IoT Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3229565.3229570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Today's Smart Home platforms such as Samsung SmartThings and Amazon AWS IoT are primarily cloud based: devices in the home sense the environment and send the collected data, directly or through a hub, to the cloud. Cloud runs various applications and analytics on the collected data, and generates commands according to the users' specifications that are sent to the actuators to control the environment. The role of the hub in this setup is effectively message passing between the devices and the cloud, while the required analytics, computation, and control are all performed by the cloud. We ask the following question: what if the cloud is not available? This can happen not only by accident or natural causes, but also due to targeted attacks. We discuss possible effects of such unavailability on the functionalities that are commonly available in smart homes, including security and safety related services as well as support for health and well-being of home users, and propose RES-Hub, a hub that can provide the required functionalities when the cloud is unavailable. During the normal functioning of the system, RES-Hub will receive regular status updates from cloud, and will use this information to continue to provide the user specified services when it detects the cloud is down. We describe an IoTivity-based software architecture that is used to implement RES-Hub in a flexible and expendable way and discuss our implementation.