A Novel Technique to Classify the Network Data by Using OCC with SVM

N. Raghavendra Sai, N. Raghavendrasai, K. SatyaRajesh
{"title":"A Novel Technique to Classify the Network Data by Using OCC with SVM","authors":"N. Raghavendra Sai, N. Raghavendrasai, K. SatyaRajesh","doi":"10.4172/0976-4860.1000201","DOIUrl":null,"url":null,"abstract":"-One class grouping perceives the target class from each and every unique class using simply getting ready data from the goal class. One class characterization is fitting for those conditions where oddities are not spoke to well in the preparation set. One-class learning, or unsupervised SVM, goes for confining data from the beginning stage in the high-dimensional, pointer space (not the main marker space), and is an estimation used for special case area. Bolster vector machine is a machine learning method that is for the most part used for data examining and design perceiving. Bolster vector machines are overseen learning models with related learning counts that separate data and perceive plans, used for grouping and relapse examination. In the present paper, we are going to introduce a mixture characterization strategy by coordinating the \"neighborhood Support Vector Machine classifiers\" with calculated relapse strategies; i.e. using a separation and vanquish technique. The estimation container starting of crossover technique presentednow is still in Support Vector Machine Watchwords: Logistic Regression, SVM, one class classifier.","PeriodicalId":90538,"journal":{"name":"International journal of advancements in computing technology","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of advancements in computing technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/0976-4860.1000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

-One class grouping perceives the target class from each and every unique class using simply getting ready data from the goal class. One class characterization is fitting for those conditions where oddities are not spoke to well in the preparation set. One-class learning, or unsupervised SVM, goes for confining data from the beginning stage in the high-dimensional, pointer space (not the main marker space), and is an estimation used for special case area. Bolster vector machine is a machine learning method that is for the most part used for data examining and design perceiving. Bolster vector machines are overseen learning models with related learning counts that separate data and perceive plans, used for grouping and relapse examination. In the present paper, we are going to introduce a mixture characterization strategy by coordinating the "neighborhood Support Vector Machine classifiers" with calculated relapse strategies; i.e. using a separation and vanquish technique. The estimation container starting of crossover technique presentednow is still in Support Vector Machine Watchwords: Logistic Regression, SVM, one class classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于OCC和SVM的网络数据分类新技术
-一个类分组从每个独特的类中感知目标类,只需从目标类中获取准备好的数据。一个类的特征是适合那些在准备集中没有很好地谈到奇怪的情况。单类学习,或无监督支持向量机,用于将数据从高维指针空间(而不是主要标记空间)的开始阶段限制在高维指针空间中,并且是用于特殊情况区域的估计。支持向量机是一种机器学习方法,主要用于数据检查和设计感知。支持向量机是有监督的学习模型,具有分离数据和感知计划的相关学习计数,用于分组和复发检查。在本文中,我们将引入一种混合表征策略,通过协调“邻域支持向量机分类器”和计算的复发策略;即使用分离和征服技术。目前提出的跨界估计容器启动技术仍停留在支持向量机的关键词:逻辑回归、支持向量机、一类分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Parameter Identification for Moving Base Nonholonomic Robot Consisting Primary Joints Editorial note :International Journal of Advancements in Technology Bone substitute biomaterials Introductory Guide to Collaborative Robots Multi-Agent-Based Performance Analysis of Classifiers for Breast Tumours
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1