Study of ultra-high gradient acceleration in carbon nanotube arrays.

J. Resta-López, Alexandra Alexandrova, Y. Li, V. Rodin, Y. Wei, Carsten Welsch, Guoxing Xia, Yuan Zhao
{"title":"Study of ultra-high gradient acceleration in carbon nanotube arrays.","authors":"J. Resta-López, Alexandra Alexandrova, Y. Li, V. Rodin, Y. Wei, Carsten Welsch, Guoxing Xia, Yuan Zhao","doi":"10.18429/JACoW-IPAC2018-TUXGBE2","DOIUrl":null,"url":null,"abstract":"Solid-state based wakefield acceleration of charged particles was previously proposed to obtain extremely high gradients on the order of 1-10 TeV/m. In recent years the possibility of using either metallic or carbon nanotube structures is attracting new attention. The use of carbon nanotubes would allow us to accelerate and channel particles overcoming many of the limitations of using natural crystals, e.g. channeling aperture restrictions and thermal-mechanical robustness issues. In this paper, we propose a potential proof of concept experiment using carbon nanotube arrays, assuming the beam parameters and conditions of accelerator facilities already available, such as CLEAR at CERN and CLARA at Daresbury. The acceleration performance of carbon nanotube arrays is investigated by using a 2D Particle-In-Cell (PIC) model based on a multi-hollow plasma. Optimum experimental beam parameters and system layout are discussed.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18429/JACoW-IPAC2018-TUXGBE2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Solid-state based wakefield acceleration of charged particles was previously proposed to obtain extremely high gradients on the order of 1-10 TeV/m. In recent years the possibility of using either metallic or carbon nanotube structures is attracting new attention. The use of carbon nanotubes would allow us to accelerate and channel particles overcoming many of the limitations of using natural crystals, e.g. channeling aperture restrictions and thermal-mechanical robustness issues. In this paper, we propose a potential proof of concept experiment using carbon nanotube arrays, assuming the beam parameters and conditions of accelerator facilities already available, such as CLEAR at CERN and CLARA at Daresbury. The acceleration performance of carbon nanotube arrays is investigated by using a 2D Particle-In-Cell (PIC) model based on a multi-hollow plasma. Optimum experimental beam parameters and system layout are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管阵列超高梯度加速度研究。
以前提出的带电粒子的固体尾流场加速可以获得1-10 TeV/m量级的极高梯度。近年来,使用金属或碳纳米管结构的可能性引起了新的关注。碳纳米管的使用将使我们能够加速和引导粒子克服使用天然晶体的许多限制,例如通道孔径限制和热机械稳健性问题。在本文中,我们提出了一个使用碳纳米管阵列的潜在概念验证实验,假设已有的加速器设施(如CERN的CLEAR和Daresbury的CLARA)的光束参数和条件。采用基于多空心等离子体的二维粒子池(PIC)模型研究了碳纳米管阵列的加速性能。讨论了最佳实验光束参数和系统布局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a 50 MeV LPA-based Injector at ATHENA for a Compact Storage Ring An Upgrade Path for the Fermilab Accelerator Complex Machine Learning-Based Direct Solver for One-To-Many Problems on Temporal Shaping of Electron Beams Adaptive Deep Learning for Time-Varying Systems With Hidden Parameters: Predicting Changing Input Beam Distributions of Compact Particle Accelerators Comment on “Fast-slow mode coupling instability for coasting beams in the presence of detuning impedance”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1