Delay optimization using SOP balancing

A. Mishchenko, R. Brayton, Stephen Jang, Victor N. Kravets
{"title":"Delay optimization using SOP balancing","authors":"A. Mishchenko, R. Brayton, Stephen Jang, Victor N. Kravets","doi":"10.1109/ICCAD.2011.6105357","DOIUrl":null,"url":null,"abstract":"Reducing delay of a digital circuit is an important topic in logic synthesis for standard cells and LUT-based FPGAs. This paper presents a simple, fast, and very efficient synthesis algorithm to improve the delay after technology mapping. The algorithm scales to large designs and is implemented in a publicly-available technology mapper. The code is available online. Experimental results on industrial designs show that the method can improve delay after standard cell mapping by 30% with the increase in area 2.4%, or by 41% with the increase in area by 3.9%, on top of a high-effort synthesis and mapping flow. In a separate experiment, the algorithm was used as part of a complete industrial standard cell design flow, leading to improvements in area and delay after place-and-route. In yet another experiment, the algorithm was applied before FPGA mapping into 4-LUTs, resulting in 16% logic level reduction at the cost of 9% area increase on top of a high-effort mapping.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Reducing delay of a digital circuit is an important topic in logic synthesis for standard cells and LUT-based FPGAs. This paper presents a simple, fast, and very efficient synthesis algorithm to improve the delay after technology mapping. The algorithm scales to large designs and is implemented in a publicly-available technology mapper. The code is available online. Experimental results on industrial designs show that the method can improve delay after standard cell mapping by 30% with the increase in area 2.4%, or by 41% with the increase in area by 3.9%, on top of a high-effort synthesis and mapping flow. In a separate experiment, the algorithm was used as part of a complete industrial standard cell design flow, leading to improvements in area and delay after place-and-route. In yet another experiment, the algorithm was applied before FPGA mapping into 4-LUTs, resulting in 16% logic level reduction at the cost of 9% area increase on top of a high-effort mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用SOP平衡进行延迟优化
降低数字电路的延迟是标准单元和基于lut的fpga逻辑合成中的一个重要课题。本文提出了一种简单、快速、高效的综合算法,以改善技术映射后的时延。该算法适用于大型设计,并在公开可用的技术映射器中实现。该代码可在网上获得。工业设计的实验结果表明,该方法可以提高标准细胞绘图后的延迟,当面积增加2.4%时,延迟提高30%;当面积增加3.9%时,延迟提高41%。在单独的实验中,该算法被用作完整的工业标准单元设计流程的一部分,从而改善了放置和路由后的面积和延迟。在另一个实验中,将该算法应用于FPGA映射到4- lut之前,结果在高工作量映射的基础上,以增加9%的面积为代价降低了16%的逻辑电平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for accelerating neuromorphic-vision algorithms on FPGAs Alternative design methodologies for the next generation logic switch Property-specific sequential invariant extraction for SAT-based unbounded model checking A corner stitching compliant B∗-tree representation and its applications to analog placement Heterogeneous B∗-trees for analog placement with symmetry and regularity considerations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1