Gold-coated silver capsule for elemental analyzer-isotope ratio mass spectrometer: Robust against pretreatment of rock material for organic carbon and δ13C analyses
Y. Matsui, Wataru Fujisaki, J. Torimoto, Keiko Tanaka, M. Nishizawa, M. Yamamoto, S. Kawagucci, Y. Shimane, Mika Tei, K. Uematsu, Akihiro Tame, Y. Kawahito, T. Kameda
{"title":"Gold-coated silver capsule for elemental analyzer-isotope ratio mass spectrometer: Robust against pretreatment of rock material for organic carbon and δ13C analyses","authors":"Y. Matsui, Wataru Fujisaki, J. Torimoto, Keiko Tanaka, M. Nishizawa, M. Yamamoto, S. Kawagucci, Y. Shimane, Mika Tei, K. Uematsu, Akihiro Tame, Y. Kawahito, T. Kameda","doi":"10.2343/geochemj.2.0626","DOIUrl":null,"url":null,"abstract":"Fujisaki et al., 2016, 2018, 2019). To prepare the samples for OC analysis with EA-IRMS, coexisting carbonate minerals need to be removed to ensure accurate and precise quantification. For example, for a sediment sample that contains 1 wt% OC and 1 wt% carbonate derived C, the total C would be 2 wt% and the δCtotal C of the non-acidified (non-decalcified) sample would be about –11‰, since the δCorg of a typical pelagic sediment is about –22‰ while the δCcarbonate of benthic foraminifera is about 0‰. In this case, the δCtotal C value cannot be used as a proxy for the δCorg. Several approaches have been proposed for removing carbonate minerals, such as acid treatment using either hydrochloric, phosphoric, or sulfurous acid (Al-Aasm et al., 1990; Brodie et al., 2011) and the stepwise combustion method (Uchida et al., 2008). Acid treatment can be Gold-coated silver capsule for elemental analyzer-isotope ratio mass spectrometer: Robust against pretreatment of rock material for organic carbon and δ13C analyses","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2343/geochemj.2.0626","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Fujisaki et al., 2016, 2018, 2019). To prepare the samples for OC analysis with EA-IRMS, coexisting carbonate minerals need to be removed to ensure accurate and precise quantification. For example, for a sediment sample that contains 1 wt% OC and 1 wt% carbonate derived C, the total C would be 2 wt% and the δCtotal C of the non-acidified (non-decalcified) sample would be about –11‰, since the δCorg of a typical pelagic sediment is about –22‰ while the δCcarbonate of benthic foraminifera is about 0‰. In this case, the δCtotal C value cannot be used as a proxy for the δCorg. Several approaches have been proposed for removing carbonate minerals, such as acid treatment using either hydrochloric, phosphoric, or sulfurous acid (Al-Aasm et al., 1990; Brodie et al., 2011) and the stepwise combustion method (Uchida et al., 2008). Acid treatment can be Gold-coated silver capsule for elemental analyzer-isotope ratio mass spectrometer: Robust against pretreatment of rock material for organic carbon and δ13C analyses
期刊介绍:
Geochemical Journal is an international journal devoted to original research papers in geochemistry and cosmochemistry. It is the primary journal of the Geochemical Society of Japan. Areas of research are as follows:
Cosmochemistry; Mineral and Rock Chemistry; Volcanology and Hydrothermal Chemistry; Isotope Geochemistry and Geochronology; Atmospheric Chemistry; Hydro- and Marine Chemistry; Organic Geochemistry; Environmental Chemistry.