Investigation of Modeling Units for Mandarin Speech Recognition Using Dfsmn-ctc-smbr

Shiliang Zhang, Ming Lei, Yuan Liu, Wei Li
{"title":"Investigation of Modeling Units for Mandarin Speech Recognition Using Dfsmn-ctc-smbr","authors":"Shiliang Zhang, Ming Lei, Yuan Liu, Wei Li","doi":"10.1109/icassp.2019.8683859","DOIUrl":null,"url":null,"abstract":"The choice of acoustic modeling units is critical to acoustic modeling in large vocabulary continuous speech recognition (LVCSR) tasks. The recent connectionist temporal classification (CTC) based acoustic models have more options for the choice of modeling units. In this work, we propose a DFSMN-CTC-sMBR acoustic model and investigate various modeling units for Mandarin speech recognition. In addition to the commonly used context-independent Initial/Finals (CI-IF), context-dependent Initial/Finals (CD-IF) and Syllable, we also propose a hybrid Character-Syllable modeling units by mixing high frequency Chinese characters and syllables. Experimental results show that DFSMN-CTC-sMBR models with all these types of modeling units can significantly outperform the well-trained conventional hybrid models. Moreover, we find that the proposed hybrid Character-Syllable modeling units is the best choice for CTC based acoustic modeling for Mandarin speech recognition in our work since it can dramatically reduce substitution errors in recognition results. In a 20,000 hours Mandarin speech recognition task, the DFSMN-CTC-sMBR system with hybrid Character-Syllable achieves a character error rate (CER) of 7.45% while performance of the well-trained DFSMN-CE-sMBR system is 9.49%.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"65 1","pages":"7085-7089"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp.2019.8683859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The choice of acoustic modeling units is critical to acoustic modeling in large vocabulary continuous speech recognition (LVCSR) tasks. The recent connectionist temporal classification (CTC) based acoustic models have more options for the choice of modeling units. In this work, we propose a DFSMN-CTC-sMBR acoustic model and investigate various modeling units for Mandarin speech recognition. In addition to the commonly used context-independent Initial/Finals (CI-IF), context-dependent Initial/Finals (CD-IF) and Syllable, we also propose a hybrid Character-Syllable modeling units by mixing high frequency Chinese characters and syllables. Experimental results show that DFSMN-CTC-sMBR models with all these types of modeling units can significantly outperform the well-trained conventional hybrid models. Moreover, we find that the proposed hybrid Character-Syllable modeling units is the best choice for CTC based acoustic modeling for Mandarin speech recognition in our work since it can dramatically reduce substitution errors in recognition results. In a 20,000 hours Mandarin speech recognition task, the DFSMN-CTC-sMBR system with hybrid Character-Syllable achieves a character error rate (CER) of 7.45% while performance of the well-trained DFSMN-CE-sMBR system is 9.49%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Dfsmn-ctc-smbr的普通话语音识别建模单元研究
声学建模单元的选择对于大词汇量连续语音识别(LVCSR)任务中的声学建模至关重要。最近基于连接时间分类(CTC)的声学模型在建模单元的选择上有了更多的选择。在这项工作中,我们提出了DFSMN-CTC-sMBR声学模型,并研究了用于普通话语音识别的各种建模单元。除了常用的上下文无关声母(CI-IF)、上下文相关声母(CD-IF)和音节外,我们还提出了一种混合高频汉字和音节的字符-音节混合建模单元。实验结果表明,包含所有这些建模单元的DFSMN-CTC-sMBR模型都能显著优于训练良好的传统混合模型。此外,我们发现所提出的混合字音节建模单元是基于CTC声学建模的普通话语音识别的最佳选择,因为它可以显著减少识别结果中的替换错误。在2万小时的普通话语音识别任务中,字符-音节混合的DFSMN-CTC-sMBR系统的字符错误率为7.45%,而经过良好训练的DFSMN-CE-sMBR系统的错误率为9.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1