Satisfiability and Resiliency in Workflow Authorization Systems

Qihua Wang, Ninghui Li
{"title":"Satisfiability and Resiliency in Workflow Authorization Systems","authors":"Qihua Wang, Ninghui Li","doi":"10.1145/1880022.1880034","DOIUrl":null,"url":null,"abstract":"We propose the role-and-relation-based access control (R2BAC) model for workflow authorization systems. In R2BAC, in addition to a user’s role memberships, the user’s relationships with other users help determine whether the user is allowed to perform a certain step in a workflow. For example, a constraint may require that two steps must not be performed by users who have conflicts of interests. We study computational complexity of the workflow satisfiability problem, which asks whether a set of users can complete a workflow. In particular, we apply tools from parameterized complexity theory to better understand the complexities of this problem. Furthermore, we reduce the workflow satisfiability problem to SAT and apply SAT solvers to address the problem. Experiments show that our algorithm can solve instances of reasonable size efficiently. Finally, it is sometimes not enough to ensure that a workflow can be completed in normal situations. We study the resiliency problem in workflow authorization systems, which asks whether a workflow can be completed even if a number of users may be absent. We formally define three levels of resiliency in workflow systems and study computational problems related to these notions of resiliency.","PeriodicalId":50912,"journal":{"name":"ACM Transactions on Information and System Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1880022.1880034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 114

Abstract

We propose the role-and-relation-based access control (R2BAC) model for workflow authorization systems. In R2BAC, in addition to a user’s role memberships, the user’s relationships with other users help determine whether the user is allowed to perform a certain step in a workflow. For example, a constraint may require that two steps must not be performed by users who have conflicts of interests. We study computational complexity of the workflow satisfiability problem, which asks whether a set of users can complete a workflow. In particular, we apply tools from parameterized complexity theory to better understand the complexities of this problem. Furthermore, we reduce the workflow satisfiability problem to SAT and apply SAT solvers to address the problem. Experiments show that our algorithm can solve instances of reasonable size efficiently. Finally, it is sometimes not enough to ensure that a workflow can be completed in normal situations. We study the resiliency problem in workflow authorization systems, which asks whether a workflow can be completed even if a number of users may be absent. We formally define three levels of resiliency in workflow systems and study computational problems related to these notions of resiliency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工作流授权系统中的可满足性和弹性
提出了基于角色和关系的工作流授权访问控制(R2BAC)模型。在R2BAC中,除了用户的角色成员关系外,用户与其他用户的关系还有助于确定是否允许用户执行工作流中的某个步骤。例如,约束可能要求有利益冲突的用户不能执行两个步骤。我们研究了工作流可满足性问题的计算复杂度,即一组用户是否能够完成一个工作流。特别是,我们应用参数化复杂性理论的工具来更好地理解这个问题的复杂性。此外,我们将工作流满意度问题简化为SAT,并应用SAT求解器来解决该问题。实验表明,该算法可以有效地求解合理大小的实例。最后,有时仅仅确保工作流在正常情况下能够完成是不够的。我们研究了工作流授权系统中的弹性问题,即工作流是否可以在多个用户缺席的情况下完成。我们正式定义了工作流系统中的三个弹性级别,并研究了与这些弹性概念相关的计算问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Information and System Security
ACM Transactions on Information and System Security 工程技术-计算机:信息系统
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
3.3 months
期刊介绍: ISSEC is a scholarly, scientific journal that publishes original research papers in all areas of information and system security, including technologies, systems, applications, and policies.
期刊最新文献
An Efficient User Verification System Using Angle-Based Mouse Movement Biometrics A New Framework for Privacy-Preserving Aggregation of Time-Series Data Behavioral Study of Users When Interacting with Active Honeytokens Model Checking Distributed Mandatory Access Control Policies Randomization-Based Intrusion Detection System for Advanced Metering Infrastructure*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1