Discovery of Spatio-Temporal Patterns in Multivariate Spatial Time Series

Gene P. K. Wu, Keith C. C. Chan
{"title":"Discovery of Spatio-Temporal Patterns in Multivariate Spatial Time Series","authors":"Gene P. K. Wu, Keith C. C. Chan","doi":"10.1145/3374748","DOIUrl":null,"url":null,"abstract":"With the advancement of the computing technology and its wide range of applications, collecting large sets of multivariate time series in multiple geographical locations introduces a problem of identifying interesting spatio-temporal patterns. We consider a new spatial structure of the data in the pattern discovery process due to the dependent nature of the data. This article presents an information-theoretic approach to detect the temporal patterns from the multivariate time series in multiple locations. Based on their occurrences of discovered temporal patterns, we propose a method to identify interesting spatio-temporal patterns by a statistical significance test. Furthermore, the identified spatio-temporal patterns can be used for clustering and classification. For evaluating the performance, a simulated dataset is tested to validate the quality of the identified patterns and compare with other approaches. The result indicates the approach can effectively identify useful patterns to characterize the dataset for further analysis in achieving good clustering quality. Furthermore, experiments on real-world datasets and case studies have been conducted to illustrate the applicability and the practicability of the proposed approach.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"80 1","pages":"1 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3374748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the advancement of the computing technology and its wide range of applications, collecting large sets of multivariate time series in multiple geographical locations introduces a problem of identifying interesting spatio-temporal patterns. We consider a new spatial structure of the data in the pattern discovery process due to the dependent nature of the data. This article presents an information-theoretic approach to detect the temporal patterns from the multivariate time series in multiple locations. Based on their occurrences of discovered temporal patterns, we propose a method to identify interesting spatio-temporal patterns by a statistical significance test. Furthermore, the identified spatio-temporal patterns can be used for clustering and classification. For evaluating the performance, a simulated dataset is tested to validate the quality of the identified patterns and compare with other approaches. The result indicates the approach can effectively identify useful patterns to characterize the dataset for further analysis in achieving good clustering quality. Furthermore, experiments on real-world datasets and case studies have been conducted to illustrate the applicability and the practicability of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元空间时间序列中时空模式的发现
随着计算技术的进步及其应用的广泛,在多个地理位置收集大量多变量时间序列带来了识别有趣时空模式的问题。由于数据的依赖性,我们在模式发现过程中考虑了一种新的数据空间结构。本文提出了一种从多位置的多变量时间序列中检测时间模式的信息理论方法。基于它们所发现的时间模式的出现,我们提出了一种通过统计显著性检验来识别有趣时空模式的方法。此外,识别的时空模式可用于聚类和分类。为了评估性能,对模拟数据集进行测试,以验证所识别模式的质量,并与其他方法进行比较。结果表明,该方法可以有效地识别出有用的模式来描述数据集,以便进一步分析,从而获得良好的聚类质量。此外,在实际数据集和案例研究上进行了实验,以说明所提出方法的适用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in Privacy-Preserving Mining of Clinical Data. PoBery: Possibly-complete Big Data Queries with Probabilistic Data Placement and Scanning A Survey on the Role of Centrality as Seed Nodes for Information Propagation in Large Scale Network DataStorm: Coupled, Continuous Simulations for Complex Urban Environments TabReformer: Unsupervised Representation Learning for Erroneous Data Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1