Providing the computing and data to the physicists: Overview of the ATLAS distributed computing system

M. Svatos
{"title":"Providing the computing and data to the physicists: Overview of the ATLAS distributed computing system","authors":"M. Svatos","doi":"10.22323/1.390.0926","DOIUrl":null,"url":null,"abstract":"The ATLAS experiment at CERN uses more than 150 sites in the WLCG to process and analyze data recorded by the LHC. The grid workflow system PanDA routinely utilizes more than 400 thousand CPU cores of those sites. The data management system Rucio manages about half an exabyte of detector and simulation data distributed among these sites. With the ever-improving performance of the LHC, more data is expected to come and the ATLAS computing needs to evolve and adapt to that. Disk space will become more scarce which should be alleviated by more active usage of tapes and caches and new smaller data formats. Grid jobs can run not just on the WLCG sites but also on opportunistic resources, i.e. clouds and HPCs. A new grafana-based monitoring system facilitates operation of the ATLAS computing. This presentation will review and explain the improvements put in place for the upcoming Run 3 and will provide an outlook to the many improvements needed for the HL-LHC.","PeriodicalId":20428,"journal":{"name":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.390.0926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ATLAS experiment at CERN uses more than 150 sites in the WLCG to process and analyze data recorded by the LHC. The grid workflow system PanDA routinely utilizes more than 400 thousand CPU cores of those sites. The data management system Rucio manages about half an exabyte of detector and simulation data distributed among these sites. With the ever-improving performance of the LHC, more data is expected to come and the ATLAS computing needs to evolve and adapt to that. Disk space will become more scarce which should be alleviated by more active usage of tapes and caches and new smaller data formats. Grid jobs can run not just on the WLCG sites but also on opportunistic resources, i.e. clouds and HPCs. A new grafana-based monitoring system facilitates operation of the ATLAS computing. This presentation will review and explain the improvements put in place for the upcoming Run 3 and will provide an outlook to the many improvements needed for the HL-LHC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为物理学家提供计算和数据:ATLAS分布式计算系统概述
欧洲核子研究中心的ATLAS实验使用WLCG中的150多个站点来处理和分析大型强子对撞机记录的数据。网格工作流系统PanDA通常使用这些站点的40多万个CPU内核。数据管理系统Rucio管理分布在这些站点之间的大约半eb的探测器和模拟数据。随着大型强子对撞机性能的不断提高,预计会有更多的数据出现,ATLAS计算需要不断发展和适应。磁盘空间将变得更加稀缺,这应该通过更积极地使用磁带和缓存以及新的更小的数据格式来缓解。网格作业不仅可以在WLCG站点上运行,还可以在机会资源上运行,例如云和高性能计算。一种新的基于grafana的监测系统便于ATLAS计算的操作。本演讲将回顾和解释即将到来的Run 3的改进,并将展望HL-LHC所需的许多改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supersymmetric theories and graphene Search for long range flow-like correlation in hadronic $e^{+}e^{-}$ collisions with Belle Status and progress of the JUNO detector The status of the R&D of Ultra Fast 8 times 8 Readout MCP-PMTs in IHEP Characterization of ALPIDE silicon sensors with inclined tracks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1