Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models

Kazuhiko Hayakawa, M. Pesaran
{"title":"Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models","authors":"Kazuhiko Hayakawa, M. Pesaran","doi":"10.2139/ssrn.2047069","DOIUrl":null,"url":null,"abstract":"This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are crosssectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that arises, and its implications for estimation and inference. We approach the problem by working with a mis-specified homoskedastic model. It is shown that the transformed maximum likelihood estimator continues to be consistent even in the presence of cross-sectional heteroskedasticity. We also obtain standard errors that are robust to cross-sectional heteroskedasticity of unknown form. By means of Monte Carlo simulation, we investigate the finite sample behavior of the transformed maximum likelihood estimator and compare it with various GMM estimators proposed in the literature. Simulation results reveal that, in terms of median absolute errors and accuracy of inference, the transformed likelihood estimator outperforms the GMM estimators in almost all cases.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"1652 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2047069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are crosssectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that arises, and its implications for estimation and inference. We approach the problem by working with a mis-specified homoskedastic model. It is shown that the transformed maximum likelihood estimator continues to be consistent even in the presence of cross-sectional heteroskedasticity. We also obtain standard errors that are robust to cross-sectional heteroskedasticity of unknown form. By means of Monte Carlo simulation, we investigate the finite sample behavior of the transformed maximum likelihood estimator and compare it with various GMM estimators proposed in the literature. Simulation results reveal that, in terms of median absolute errors and accuracy of inference, the transformed likelihood estimator outperforms the GMM estimators in almost all cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态面板数据模型转换似然估计的鲁棒标准误差
本文将Hsiao, Pesaran和Tahmiscioglu(2002)的动态面板数据模型估计的转换最大似然方法扩展到误差是横截面异方差的情况。由于出现的附带参数问题及其对估计和推理的影响,这个扩展不是微不足道的。我们通过使用一个错误指定的同方差模型来处理这个问题。结果表明,即使存在横截面异方差,变换后的极大似然估计量仍然是一致的。我们还得到了对未知形式的横截面异方差具有鲁棒性的标准误差。通过蒙特卡罗模拟,我们研究了变换后的极大似然估计量的有限样本行为,并将其与文献中提出的各种GMM估计量进行了比较。仿真结果表明,在绝大多数情况下,变换后的似然估计量在绝对误差中值和推理精度方面都优于GMM估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hawkes-driven stochastic volatility models: goodness-of-fit testing of alternative intensity specifications with S&P500 data Identification of Factor Risk Premia Herding in Probabilistic Forecasts Efficient Bias Robust Cross Section Factor Models Multi-factor, Age-Cohort, Affine Mortality Models: A Multi-Country Comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1