On Fairness of Medical Image Classification with Multiple Sensitive Attributes via Learning Orthogonal Representations

Wenlong Deng, Yuan Zhong, Qianming Dou, Xiaoxiao Li
{"title":"On Fairness of Medical Image Classification with Multiple Sensitive Attributes via Learning Orthogonal Representations","authors":"Wenlong Deng, Yuan Zhong, Qianming Dou, Xiaoxiao Li","doi":"10.48550/arXiv.2301.01481","DOIUrl":null,"url":null,"abstract":"Mitigating the discrimination of machine learning models has gained increasing attention in medical image analysis. However, rare works focus on fair treatments for patients with multiple sensitive demographic ones, which is a crucial yet challenging problem for real-world clinical applications. In this paper, we propose a novel method for fair representation learning with respect to multi-sensitive attributes. We pursue the independence between target and multi-sensitive representations by achieving orthogonality in the representation space. Concretely, we enforce the column space orthogonality by keeping target information on the complement of a low-rank sensitive space. Furthermore, in the row space, we encourage feature dimensions between target and sensitive representations to be orthogonal. The effectiveness of the proposed method is demonstrated with extensive experiments on the CheXpert dataset. To our best knowledge, this is the first work to mitigate unfairness with respect to multiple sensitive attributes in the field of medical imaging.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"2014 1","pages":"158-169"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.01481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Mitigating the discrimination of machine learning models has gained increasing attention in medical image analysis. However, rare works focus on fair treatments for patients with multiple sensitive demographic ones, which is a crucial yet challenging problem for real-world clinical applications. In this paper, we propose a novel method for fair representation learning with respect to multi-sensitive attributes. We pursue the independence between target and multi-sensitive representations by achieving orthogonality in the representation space. Concretely, we enforce the column space orthogonality by keeping target information on the complement of a low-rank sensitive space. Furthermore, in the row space, we encourage feature dimensions between target and sensitive representations to be orthogonal. The effectiveness of the proposed method is demonstrated with extensive experiments on the CheXpert dataset. To our best knowledge, this is the first work to mitigate unfairness with respect to multiple sensitive attributes in the field of medical imaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于正交表征学习的多敏感属性医学图像分类公平性研究
减轻机器学习模型的歧视在医学图像分析中越来越受到关注。然而,罕见的作品侧重于对具有多种敏感人口统计学特征的患者进行公平治疗,这对于现实世界的临床应用来说是一个至关重要但具有挑战性的问题。本文提出了一种基于多敏感属性的公平表示学习方法。我们通过在表示空间中实现正交性来追求目标表示和多敏感表示之间的独立性。具体来说,我们通过将目标信息保持在低秩敏感空间的补上来实现列空间的正交性。此外,在行空间中,我们鼓励目标和敏感表示之间的特征维度是正交的。在CheXpert数据集上进行了大量的实验,证明了该方法的有效性。据我们所知,这是第一个在医学成像领域减轻对多个敏感属性的不公平的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vicinal Feature Statistics Augmentation for Federated 3D Medical Volume Segmentation Better Generalization of White Matter Tract Segmentation to Arbitrary Datasets with Scaled Residual Bootstrap Unsupervised Adaptation of Polyp Segmentation Models via Coarse-to-Fine Self-Supervision Weakly Semi-supervised Detection in Lung Ultrasound Videos Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1