{"title":"Generalized canonical correlation analysis for functional data","authors":"Tomasz Górecki, M. Krzyśko, W. Wołyński","doi":"10.2478/bile-2020-0001","DOIUrl":null,"url":null,"abstract":"Summary There is a growing need to analyze data sets characterized by several sets of variables observed on the same set of individuals. Such complex data structures are known as multiblock (or multiple-set) data sets. Multi-block data sets are encountered in diverse fields including bioinformatics, chemometrics, food analysis, etc. Generalized Canonical Correlation Analysis (GCCA) is a very powerful method to study this kind of relationships between blocks. It can also be viewed as a method for the integration of information from K > 2 distinct sources (Takane and Oshima-Takane 2002). In this paper, GCCA is considered in the context of multivariate functional data. Such data are treated as realizations of multivariate random processes. GCCA is a technique that allows the joint analysis of several sets of data through dimensionality reduction. The central problem of GCCA is to construct a series of components aiming to maximize the association among the multiple variable sets. This method will be presented for multivariate functional data. Finally, a practical example will be discussed.","PeriodicalId":8933,"journal":{"name":"Biometrical Letters","volume":"5 1","pages":"1 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bile-2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Summary There is a growing need to analyze data sets characterized by several sets of variables observed on the same set of individuals. Such complex data structures are known as multiblock (or multiple-set) data sets. Multi-block data sets are encountered in diverse fields including bioinformatics, chemometrics, food analysis, etc. Generalized Canonical Correlation Analysis (GCCA) is a very powerful method to study this kind of relationships between blocks. It can also be viewed as a method for the integration of information from K > 2 distinct sources (Takane and Oshima-Takane 2002). In this paper, GCCA is considered in the context of multivariate functional data. Such data are treated as realizations of multivariate random processes. GCCA is a technique that allows the joint analysis of several sets of data through dimensionality reduction. The central problem of GCCA is to construct a series of components aiming to maximize the association among the multiple variable sets. This method will be presented for multivariate functional data. Finally, a practical example will be discussed.