A Sharp Discrepancy Bound for Jittered Sampling

Benjamin Doerr
{"title":"A Sharp Discrepancy Bound for Jittered Sampling","authors":"Benjamin Doerr","doi":"10.1090/mcom/3727","DOIUrl":null,"url":null,"abstract":"For $m, d \\in {\\mathbb N}$, a jittered sampling point set $P$ having $N = m^d$ points in $[0,1)^d$ is constructed by partitioning the unit cube $[0,1)^d$ into $m^d$ axis-aligned cubes of equal size and then placing one point independently and uniformly at random in each cube. We show that there are constants $c \\ge 0$ and $C$ such that for all $d$ and all $m \\ge d$ the expected non-normalized star discrepancy of a jittered sampling point set satisfies \\[c \\,dm^{\\frac{d-1}{2}} \\sqrt{1 + \\log(\\tfrac md)} \\le {\\mathbb E} D^*(P) \\le C\\, dm^{\\frac{d-1}{2}} \\sqrt{1 + \\log(\\tfrac md)}.\\] \nThis discrepancy is thus smaller by a factor of $\\Theta\\big(\\sqrt{\\frac{1+\\log(m/d)}{m/d}}\\,\\big)$ than the one of a uniformly distributed random point set of $m^d$ points. This result improves both the upper and the lower bound for the discrepancy of jittered sampling given by Pausinger and Steinerberger (Journal of Complexity (2016)). It also removes the asymptotic requirement that $m$ is sufficiently large compared to $d$.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"3 1","pages":"1871-1892"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

For $m, d \in {\mathbb N}$, a jittered sampling point set $P$ having $N = m^d$ points in $[0,1)^d$ is constructed by partitioning the unit cube $[0,1)^d$ into $m^d$ axis-aligned cubes of equal size and then placing one point independently and uniformly at random in each cube. We show that there are constants $c \ge 0$ and $C$ such that for all $d$ and all $m \ge d$ the expected non-normalized star discrepancy of a jittered sampling point set satisfies \[c \,dm^{\frac{d-1}{2}} \sqrt{1 + \log(\tfrac md)} \le {\mathbb E} D^*(P) \le C\, dm^{\frac{d-1}{2}} \sqrt{1 + \log(\tfrac md)}.\] This discrepancy is thus smaller by a factor of $\Theta\big(\sqrt{\frac{1+\log(m/d)}{m/d}}\,\big)$ than the one of a uniformly distributed random point set of $m^d$ points. This result improves both the upper and the lower bound for the discrepancy of jittered sampling given by Pausinger and Steinerberger (Journal of Complexity (2016)). It also removes the asymptotic requirement that $m$ is sufficiently large compared to $d$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抖动采样的尖锐差异界
对于$m, d \in {\mathbb N}$,在$[0,1)^d$中有$N = m^d$个点的抖动采样点集$P$是通过将单位立方体$[0,1)^d$划分为$m^d$个大小相等的轴向立方体,然后在每个立方体中独立且均匀地随机放置一个点来构建的。我们表明,存在常数$c \ge 0$和$C$,使得对于所有$d$和所有$m \ge d$,抖动采样点集的预期非归一化星形差异满足\[c \,dm^{\frac{d-1}{2}} \sqrt{1 + \log(\tfrac md)} \le {\mathbb E} D^*(P) \le C\, dm^{\frac{d-1}{2}} \sqrt{1 + \log(\tfrac md)}.\],因此,该差异比均匀分布的随机点集$m^d$点的差异小$\Theta\big(\sqrt{\frac{1+\log(m/d)}{m/d}}\,\big)$倍。该结果改善了Pausinger和Steinerberger (Journal of Complexity(2016))给出的抖动采样差异的上界和下界。它还消除了$m$与$d$相比足够大的渐近要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full discretization error analysis of exponential integrators for semilinear wave equations Fast and stable augmented Levin methods for highly oscillatory and singular integrals Finite element/holomorphic operator function method for the transmission eigenvalue problem Algorithms for fundamental invariants and equivariants of finite groups An algorithm for Hodge ideals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1