Implementation of Particle Swarm Optimization in FPSoC devices

Roberto Fernández Molanes, Martin Garaj, W. Tang, J. Rodríguez-Andina, J. Fariña, K. Tsang, Kim-Fung Man
{"title":"Implementation of Particle Swarm Optimization in FPSoC devices","authors":"Roberto Fernández Molanes, Martin Garaj, W. Tang, J. Rodríguez-Andina, J. Fariña, K. Tsang, Kim-Fung Man","doi":"10.1109/ISIE.2017.8001428","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) is a widely used algorithm to solve complex optimization problems with non-linear objective functions. PSO usually requires powerful and expensive computers to achieve reasonable execution times. Sometimes the price or size of the computing system is unacceptable, forcing designers to simplify the objective function or to discard PSO. To overcome this limitation, this paper proposes the implementation of PSO in Field Programmable Systems-on-Chip (FPSoCs). FPSoC devices combine in the same chip powerful processors and reconfigurable logic (FPGA fabric). Experimental results are presented demonstrating that the proposed system achieves a performance similar to that of a desktop computer for a fraction of cost and size. It can be clearly concluded that the proposed system is a good option for running PSO both at design and final application deployment levels.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"25 1","pages":"1274-1279"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Particle Swarm Optimization (PSO) is a widely used algorithm to solve complex optimization problems with non-linear objective functions. PSO usually requires powerful and expensive computers to achieve reasonable execution times. Sometimes the price or size of the computing system is unacceptable, forcing designers to simplify the objective function or to discard PSO. To overcome this limitation, this paper proposes the implementation of PSO in Field Programmable Systems-on-Chip (FPSoCs). FPSoC devices combine in the same chip powerful processors and reconfigurable logic (FPGA fabric). Experimental results are presented demonstrating that the proposed system achieves a performance similar to that of a desktop computer for a fraction of cost and size. It can be clearly concluded that the proposed system is a good option for running PSO both at design and final application deployment levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子群优化在FPSoC器件中的实现
粒子群算法(PSO)是一种广泛应用于求解具有非线性目标函数的复杂优化问题的算法。PSO通常需要强大而昂贵的计算机来实现合理的执行时间。有时,计算系统的价格或大小是不可接受的,迫使设计者简化目标函数或放弃粒子群算法。为了克服这一限制,本文提出了PSO在现场可编程片上系统(fpsoc)中的实现。FPSoC器件在同一芯片中结合了强大的处理器和可重构逻辑(FPGA结构)。实验结果表明,该系统以很小的成本和体积实现了与台式计算机相似的性能。可以清楚地得出结论,所建议的系统是在设计和最终应用程序部署级别运行PSO的好选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
32nd IEEE International Symposium on Industrial Electronics, ISIE 2023, Helsinki, Finland, June 19-21, 2023 Fuel Cell prognosis using particle filter: application to the automotive sector Bi-Level Distribution Network Planning Integrated with Energy Storage to PV-Connected Network Distributed adaptive anti-windup consensus tracking of networked systems with switching topologies Deep Belief Network and Dempster-Shafer Evidence Theory for Bearing Fault Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1