{"title":"Rapid recovery of genetic diversity of stomatopod populations on Krakatau: temporal and spatial scales of marine larval dispersal","authors":"P. Barber, M. K. Moosa, S. Palumbi","doi":"10.1098/rspb.2002.2026","DOIUrl":null,"url":null,"abstract":"Although the recovery of terrestrial communities shattered by the massive eruption of Krakatau in 1883 has been well chronicled, the fate of marine populations has been largely ignored. We examined patterns of genetic diversity in populations of two coral reef–dwelling mantis shrimp, Haptosquilla pulchella and Haptosquilla glyptocercus (Stomatopoda: Protosquillidae) , on the islands of Anak Krakatau and Rakata. Genetic surveys of mitochondrial cytochrome oxidase c (subunit 1) in these populations revealed remarkably high levels of haplotypic and nucleotide diversity that were comparable with undisturbed populations throughout the Indo–Pacific. Recolonization and rapid recovery of genetic diversity in the Krakatau populations indicates that larval dispersal from multiple and diverse source populations contributes substantially to the demographics of local populations over intermediate temporal (tens to hundreds of years) and spatial scales (tens to hundreds of kilometres). Natural experiments such as Krakatau provide an excellent mechanism to investigate marine larval dispersal and connectivity. Results from stomatopods indicate that marine reserves should be spaced no more than 50–100 km apart to facilitate ecological connectivity via larval dispersal.","PeriodicalId":20585,"journal":{"name":"Proceedings of the Royal Society of London. Series B. Biological Sciences","volume":"44 1","pages":"1591 - 1597"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series B. Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.2002.2026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64
Abstract
Although the recovery of terrestrial communities shattered by the massive eruption of Krakatau in 1883 has been well chronicled, the fate of marine populations has been largely ignored. We examined patterns of genetic diversity in populations of two coral reef–dwelling mantis shrimp, Haptosquilla pulchella and Haptosquilla glyptocercus (Stomatopoda: Protosquillidae) , on the islands of Anak Krakatau and Rakata. Genetic surveys of mitochondrial cytochrome oxidase c (subunit 1) in these populations revealed remarkably high levels of haplotypic and nucleotide diversity that were comparable with undisturbed populations throughout the Indo–Pacific. Recolonization and rapid recovery of genetic diversity in the Krakatau populations indicates that larval dispersal from multiple and diverse source populations contributes substantially to the demographics of local populations over intermediate temporal (tens to hundreds of years) and spatial scales (tens to hundreds of kilometres). Natural experiments such as Krakatau provide an excellent mechanism to investigate marine larval dispersal and connectivity. Results from stomatopods indicate that marine reserves should be spaced no more than 50–100 km apart to facilitate ecological connectivity via larval dispersal.