Learning to identify electrons

Julian Collado, J. Howard, Taylor Faucett, Tony Tong, P. Baldi, D. Whiteson
{"title":"Learning to identify electrons","authors":"Julian Collado, J. Howard, Taylor Faucett, Tony Tong, P. Baldi, D. Whiteson","doi":"10.1103/PhysRevD.103.116028","DOIUrl":null,"url":null,"abstract":"We investigate whether state-of-the-art classification features commonly used to distinguish electrons from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the performance of typical features, revealing a $\\approx 5\\%$ gap which indicates that these lower-level data do contain untapped classification power. To reveal the nature of this unused information, we use a recently developed technique to map the deep network into a space of physically interpretable observables. We identify two simple calorimeter observables which are not typically used for electron identification, but which mimic the decisions of the convolutional network and nearly close the performance gap.","PeriodicalId":8429,"journal":{"name":"arXiv: High Energy Physics - Experiment","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.103.116028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We investigate whether state-of-the-art classification features commonly used to distinguish electrons from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the performance of typical features, revealing a $\approx 5\%$ gap which indicates that these lower-level data do contain untapped classification power. To reveal the nature of this unused information, we use a recently developed technique to map the deep network into a space of physically interpretable observables. We identify two simple calorimeter observables which are not typically used for electron identification, but which mimic the decisions of the convolutional network and nearly close the performance gap.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习识别电子
我们研究了在对撞机实验中通常用于区分电子和射流背景的最先进的分类特征是否忽略了有价值的信息。对电磁和强子量热计沉积物的深度卷积神经网络分析与典型特征的表现进行了比较,揭示了大约5%的差距,这表明这些较低水平的数据确实包含未开发的分类能力。为了揭示这些未使用信息的本质,我们使用最近开发的技术将深度网络映射到物理可解释的可观察空间中。我们确定了两个简单的量热计观测值,它们通常不用于电子识别,但它们模拟了卷积网络的决策,几乎缩小了性能差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First direct neutrino-mass measurement with sub-eV sensitivity Search for invisible axion dark matter of mass ma=43  μeV with the QUAX– aγ experiment First measurement using a nuclear emulsion detector of the ν μ charged-current cross section on iron around the 1 GeV energy region Latest D0 results on exotic hadrons produced in $p\bar p $ collision Sensitivity improvement in hidden photon detection using resonant cavities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1