Investigating Next Steps in Static API-Misuse Detection

Sven Amann, H. Nguyen, Sarah Nadi, T. Nguyen, M. Mezini
{"title":"Investigating Next Steps in Static API-Misuse Detection","authors":"Sven Amann, H. Nguyen, Sarah Nadi, T. Nguyen, M. Mezini","doi":"10.1109/MSR.2019.00053","DOIUrl":null,"url":null,"abstract":"Application Programming Interfaces (APIs) often impose constraints such as call order or preconditions. API misuses, i.e., usages violating these constraints, may cause software crashes, data-loss, and vulnerabilities. Researchers developed several approaches to detect API misuses, typically still resulting in low recall and precision. In this work, we investigate ways to improve API-misuse detection. We design MUDetect, an API-misuse detector that builds on the strengths of existing detectors and tries to mitigate their weaknesses. MUDetect uses a new graph representation of API usages that captures different types of API misuses and a systematically designed ranking strategy that effectively improves precision. Evaluation shows that MUDetect identifies real-world API misuses with twice the recall of previous detectors and 2.5x higher precision. It even achieves almost 4x higher precision and recall, when mining patterns across projects, rather than from only the target project.","PeriodicalId":6706,"journal":{"name":"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)","volume":"55 1","pages":"265-275"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2019.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Application Programming Interfaces (APIs) often impose constraints such as call order or preconditions. API misuses, i.e., usages violating these constraints, may cause software crashes, data-loss, and vulnerabilities. Researchers developed several approaches to detect API misuses, typically still resulting in low recall and precision. In this work, we investigate ways to improve API-misuse detection. We design MUDetect, an API-misuse detector that builds on the strengths of existing detectors and tries to mitigate their weaknesses. MUDetect uses a new graph representation of API usages that captures different types of API misuses and a systematically designed ranking strategy that effectively improves precision. Evaluation shows that MUDetect identifies real-world API misuses with twice the recall of previous detectors and 2.5x higher precision. It even achieves almost 4x higher precision and recall, when mining patterns across projects, rather than from only the target project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究静态api误用检测的后续步骤
应用程序编程接口(api)经常施加诸如调用顺序或先决条件之类的约束。API的误用,即违反这些约束的用法,可能会导致软件崩溃、数据丢失和漏洞。研究人员开发了几种检测API滥用的方法,但通常仍然导致召回率和准确率较低。在这项工作中,我们研究了改进api滥用检测的方法。我们设计了MUDetect,这是一个api误用检测器,它建立在现有检测器的优势之上,并试图减轻它们的弱点。MUDetect使用一种新的API用法图表示来捕获不同类型的API误用,并使用系统设计的排序策略来有效地提高精度。评估表明,MUDetect识别真实世界的API滥用,召回率是以前检测器的两倍,精度提高2.5倍。当跨项目挖掘模式时,它甚至达到了几乎4倍的精度和召回率,而不是仅从目标项目中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeSaMe: A Data Set of Semantically Similar Java Methods Lessons Learned from Using a Deep Tree-Based Model for Software Defect Prediction in Practice STRAIT: A Tool for Automated Software Reliability Growth Analysis Assessing Diffusion and Perception of Test Smells in Scala Projects An Empirical History of Permission Requests and Mistakes in Open Source Android Apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1