Time-Frequency Analysis of Fiber Optic Gyro Based on HilbertHuang Transform

Wentao Liu, Jieyu Liu, Xiaogang Zhou, Qiang Shen
{"title":"Time-Frequency Analysis of Fiber Optic Gyro Based on HilbertHuang Transform","authors":"Wentao Liu, Jieyu Liu, Xiaogang Zhou, Qiang Shen","doi":"10.1109/GNCC42960.2018.9019173","DOIUrl":null,"url":null,"abstract":"In order to further understand its composition, we use Hilbert-Huang transform to analyze the output signal of the fiber optic gyroscope. First, we use empirical mode decom-position (EMD) to process the original signal, and then we can obtain a series of intrinsic mode functions (IMF). After the Hilbert-Huang transform, the three-dimensional time-frequency spectrum of the IMF is finally received according to the instantaneous parameters of the IMF. In addition, compared with the traditional Allan variance’s object of analysis, in this paper, the method is carried out in the frequency domain for every IMF. On the whole, in contrast with the conventional time-frequency analysis method, such as wavelet time-frequency analysis method, in terms of adaptability and accuracy, the means used in this paper is worth mentioning.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"95 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GNCC42960.2018.9019173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to further understand its composition, we use Hilbert-Huang transform to analyze the output signal of the fiber optic gyroscope. First, we use empirical mode decom-position (EMD) to process the original signal, and then we can obtain a series of intrinsic mode functions (IMF). After the Hilbert-Huang transform, the three-dimensional time-frequency spectrum of the IMF is finally received according to the instantaneous parameters of the IMF. In addition, compared with the traditional Allan variance’s object of analysis, in this paper, the method is carried out in the frequency domain for every IMF. On the whole, in contrast with the conventional time-frequency analysis method, such as wavelet time-frequency analysis method, in terms of adaptability and accuracy, the means used in this paper is worth mentioning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于hilberthang变换的光纤陀螺时频分析
为了进一步了解其组成,我们使用Hilbert-Huang变换对光纤陀螺仪的输出信号进行分析。首先利用经验模态分解(EMD)对原始信号进行处理,得到一系列内禀模态函数(IMF)。经过Hilbert-Huang变换,最后根据IMF的瞬时参数得到IMF的三维时频谱。此外,与传统的Allan方差分析对象相比,本文的方法在频域上对每个IMF进行分析。总的来说,与传统的时频分析方法如小波时频分析方法相比,本文所采用的方法在适应性和准确性上都是值得一提的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sliding-Mode Disturbance Observer-Based Nonlinear Control for Unmanned Dual-Arm Aerial Manipulator Subject to State Constraints A Cloud Detection Method for Landsat 8 Satellite Remote Sensing Images Based on Improved CDNet Model Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations A Novel Model Calibration Method for Active Magnetic Bearing Based on Deep Reinforcement Learning Wind and Actuator Fault Estimation for a Quadrotor UAV Based on Two-Stage Particle Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1