Insight into the role of mesoporosity in the selective production of propene from methanol

Xiaojing Meng, Jiaqin Peng, Xiaowei Meng, Yan-Zhi Qin, Jian Feng, Min Li, Junjie Zhou, Zhenfu Jia
{"title":"Insight into the role of mesoporosity in the selective production of propene from methanol","authors":"Xiaojing Meng, Jiaqin Peng, Xiaowei Meng, Yan-Zhi Qin, Jian Feng, Min Li, Junjie Zhou, Zhenfu Jia","doi":"10.1177/17475198231184785","DOIUrl":null,"url":null,"abstract":"Microporous ZSM-5, hierarchical ZSM-5, and hierarchical ZSM-11 zeolites with different crystalline sizes were prepared to determine the relations of mesoporosity with catalytic performance in methanol-to-propene reaction. The physicochemical properties were investigated by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Temperature-Programmed Desorption, and sorption techniques. It was shown that the low pore tortuosity, hierarchical structure, and the reduction of the crystal size all can shorten the diffusion path and reduce the diffusion resistance, leading to the increase of propylene yield. By comparison, the propene yield increase to the increment of mesoporous volume due to the tortuosity is more effective than other aspects. For silica–alumina zeolites, the effective way to reduce the diffusion resistance and increase the selectivity of propylene is to lower the pore tortuosity degree, and then introduce the mesoporous structure and reduce the grain size.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198231184785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microporous ZSM-5, hierarchical ZSM-5, and hierarchical ZSM-11 zeolites with different crystalline sizes were prepared to determine the relations of mesoporosity with catalytic performance in methanol-to-propene reaction. The physicochemical properties were investigated by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Temperature-Programmed Desorption, and sorption techniques. It was shown that the low pore tortuosity, hierarchical structure, and the reduction of the crystal size all can shorten the diffusion path and reduce the diffusion resistance, leading to the increase of propylene yield. By comparison, the propene yield increase to the increment of mesoporous volume due to the tortuosity is more effective than other aspects. For silica–alumina zeolites, the effective way to reduce the diffusion resistance and increase the selectivity of propylene is to lower the pore tortuosity degree, and then introduce the mesoporous structure and reduce the grain size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介孔在甲醇选择性生产丙烯中的作用
制备了不同晶粒尺寸的微孔分子筛ZSM-5、分级分子筛ZSM-5和分级分子筛ZSM-11,研究了介孔率与甲醇-丙烯反应催化性能的关系。采用x射线衍射、傅里叶变换红外光谱、扫描电镜、程序升温解吸和吸附等技术对其理化性质进行了研究。结果表明,低孔隙弯曲度、分层结构和晶粒尺寸的减小均可缩短扩散路径,降低扩散阻力,从而提高丙烯收率。通过比较,丙烯产率的提高主要是由于扭曲导致介孔体积的增加。对于硅铝分子筛,降低孔扭曲度,引入介孔结构,减小晶粒尺寸是降低扩散阻力,提高丙烯选择性的有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Research-s
Journal of Chemical Research-s 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.
期刊最新文献
Preparation of ZrO2/Na-β and ZrO2/H-β catalysts and their catalytic performance for the Meerwein–Ponndorf–Verley reaction of cyclohexanone and isopropanol Spectroscopic and DFT study of tris(β-diketonato)cobalt(III) complexes One-pot, simple, and facile synthesis of 4-(3-benzylbenzo[d]thiazol-2(3H)-ylidene)-cyclohexa-2,5-dien-1-one derivatives via a novel three-component reaction An effective calix[4]arene-based adsorbent for tetracycline removal from water systems: Kinetic, isotherm, and thermodynamic studies A thermoregulated phase-transfer ruthenium nanocatalyst for the atmospheric hydrogenation of α,β-unsaturated ketones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1