Genomic structure predicts metabolite dynamics in microbial communities

K. Gowda, Derek Ping, Madhav Mani, S. Kuehn
{"title":"Genomic structure predicts metabolite dynamics in microbial communities","authors":"K. Gowda, Derek Ping, Madhav Mani, S. Kuehn","doi":"10.1101/2020.09.29.315713","DOIUrl":null,"url":null,"abstract":"The metabolic function of microbial communities has played a defining role in the evolution and persistence of life on Earth, driving redox reactions that form the basis of global biogeochemical cycles. Community metabolism emerges from a hierarchy of processes including gene expression, ecological interactions, and environmental factors. In wild communities, gene content is correlated with environmental context, but predicting metabolic dynamics from genomic structure remains elusive. Here we show, for the process of denitrification, that community metabolism is predictable from the genes each member of the community possesses. Machine learning reveals a sparse and generalizable mapping from gene content to metabolite dynamics across a genomically-diverse library of bacteria. A consumer-resource model correctly predicts community metabolism from single-strain phenotypes. Our results demonstrate that the conserved impacts of metabolic genes can predict community function, enabling the prediction of metabolite dynamics from metagenomes, designing denitrifying communities, and discovering how genome evolution impacts metabolism.","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.09.29.315713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The metabolic function of microbial communities has played a defining role in the evolution and persistence of life on Earth, driving redox reactions that form the basis of global biogeochemical cycles. Community metabolism emerges from a hierarchy of processes including gene expression, ecological interactions, and environmental factors. In wild communities, gene content is correlated with environmental context, but predicting metabolic dynamics from genomic structure remains elusive. Here we show, for the process of denitrification, that community metabolism is predictable from the genes each member of the community possesses. Machine learning reveals a sparse and generalizable mapping from gene content to metabolite dynamics across a genomically-diverse library of bacteria. A consumer-resource model correctly predicts community metabolism from single-strain phenotypes. Our results demonstrate that the conserved impacts of metabolic genes can predict community function, enabling the prediction of metabolite dynamics from metagenomes, designing denitrifying communities, and discovering how genome evolution impacts metabolism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因组结构预测微生物群落的代谢物动态
微生物群落的代谢功能在地球上生命的进化和持续中发挥了决定性的作用,推动了形成全球生物地球化学循环基础的氧化还原反应。群落代谢过程包括基因表达、生态相互作用和环境因素。在野生群落中,基因含量与环境相关,但从基因组结构预测代谢动力学仍然难以捉摸。在这里,我们表明,对于反硝化过程,群落代谢是可预测的基因,每个成员的群落拥有。机器学习揭示了细菌基因组多样性文库中从基因内容到代谢物动态的稀疏和可推广的映射。消费者资源模型正确地预测了单一菌株表型的群落代谢。我们的研究结果表明,代谢基因的保守影响可以预测群落功能,从而可以预测来自宏基因组的代谢物动力学,设计反硝化群落,并发现基因组进化如何影响代谢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patient iPSC models reveal glia-intrinsic phenotypes in multiple sclerosis. Hallmarks of regeneration. Integrated single-cell analysis defines the epigenetic basis of castration-resistant prostate luminal cells. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cultivating awareness of donation in cutting-edge allogenic cell therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1