A Review on Question Generation from Natural Language Text

Ruqing Zhang, Jiafeng Guo, Luyao Chen, Yixing Fan, Xueqi Cheng
{"title":"A Review on Question Generation from Natural Language Text","authors":"Ruqing Zhang, Jiafeng Guo, Luyao Chen, Yixing Fan, Xueqi Cheng","doi":"10.1145/3468889","DOIUrl":null,"url":null,"abstract":"Question generation is an important yet challenging problem in Artificial Intelligence (AI), which aims to generate natural and relevant questions from various input formats, e.g., natural language text, structure database, knowledge base, and image. In this article, we focus on question generation from natural language text, which has received tremendous interest in recent years due to the widespread applications such as data augmentation for question answering systems. During the past decades, many different question generation models have been proposed, from traditional rule-based methods to advanced neural network-based methods. Since there have been a large variety of research works proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we try to provide a more comprehensive taxonomy of question generation tasks from three different perspectives, i.e., the types of the input context text, the target answer, and the generated question. We take a deep look into existing models from different dimensions to analyze their underlying ideas, major design principles, and training strategies We compare these models through benchmark tasks to obtain an empirical understanding of the existing techniques. Moreover, we discuss what is missing in the current literature and what are the promising and desired future directions.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"54 1","pages":"1 - 43"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Question generation is an important yet challenging problem in Artificial Intelligence (AI), which aims to generate natural and relevant questions from various input formats, e.g., natural language text, structure database, knowledge base, and image. In this article, we focus on question generation from natural language text, which has received tremendous interest in recent years due to the widespread applications such as data augmentation for question answering systems. During the past decades, many different question generation models have been proposed, from traditional rule-based methods to advanced neural network-based methods. Since there have been a large variety of research works proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we try to provide a more comprehensive taxonomy of question generation tasks from three different perspectives, i.e., the types of the input context text, the target answer, and the generated question. We take a deep look into existing models from different dimensions to analyze their underlying ideas, major design principles, and training strategies We compare these models through benchmark tasks to obtain an empirical understanding of the existing techniques. Moreover, we discuss what is missing in the current literature and what are the promising and desired future directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然语言文本问题生成研究综述
问题生成是人工智能(AI)中的一个重要而又具有挑战性的问题,它旨在从各种输入格式(如自然语言文本、结构数据库、知识库和图像)中生成自然且相关的问题。在本文中,我们主要关注自然语言文本的问题生成,近年来,由于问答系统的数据增强等广泛应用,自然语言文本的问题生成受到了极大的关注。在过去的几十年里,人们提出了许多不同的问题生成模型,从传统的基于规则的方法到先进的基于神经网络的方法。由于提出了各种各样的研究工作,我们认为现在是总结现状,学习现有方法,并为未来发展提供一些见解的合适时机。与现有的综述相比,在本次调查中,我们试图从三个不同的角度(即输入上下文文本的类型、目标答案和生成的问题)提供更全面的问题生成任务分类。我们从不同的维度深入研究现有的模型,分析它们的基本思想、主要设计原则和训练策略。我们通过基准任务对这些模型进行比较,以获得对现有技术的经验理解。此外,我们还讨论了当前文献中缺失的内容以及有希望和期望的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Graph Learning for Session-based Recommendation GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs Complex-valued Neural Network-based Quantum Language Models eFraudCom: An E-commerce Fraud Detection System via Competitive Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1