How good are machine learning clouds for binary classification with good features?: extended abstract

Hantian Zhang, L. Zeng, Wentao Wu, Ce Zhang
{"title":"How good are machine learning clouds for binary classification with good features?: extended abstract","authors":"Hantian Zhang, L. Zeng, Wentao Wu, Ce Zhang","doi":"10.1145/3127479.3132570","DOIUrl":null,"url":null,"abstract":"In spite of the recent advancement of machine learning research, modern machine learning systems are still far from easy to use, at least from the perspective of business users or even scientists without a computer science background. Recently, there is a trend toward pushing machine learning onto the cloud as a \"service,\" a.k.a. machine learning clouds. By putting a set of machine learning primitives on the cloud, these services significantly raise the level of abstraction for machine learning. For example, with Amazon Machine Learning, users only need to upload the dataset and specify the type of task (classification or regression). The cloud will then train machine learning models without any user intervention.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3132570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In spite of the recent advancement of machine learning research, modern machine learning systems are still far from easy to use, at least from the perspective of business users or even scientists without a computer science background. Recently, there is a trend toward pushing machine learning onto the cloud as a "service," a.k.a. machine learning clouds. By putting a set of machine learning primitives on the cloud, these services significantly raise the level of abstraction for machine learning. For example, with Amazon Machine Learning, users only need to upload the dataset and specify the type of task (classification or regression). The cloud will then train machine learning models without any user intervention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习云对于具有良好特征的二值分类有多好?:扩展摘要
尽管最近机器学习研究取得了进展,但现代机器学习系统仍然远不容易使用,至少从商业用户甚至没有计算机科学背景的科学家的角度来看是这样。最近,有一种趋势是将机器学习作为一种“服务”推向云端,也就是机器学习云。通过将一组机器学习原语放在云上,这些服务显著提高了机器学习的抽象级别。例如,使用Amazon Machine Learning,用户只需要上传数据集并指定任务类型(分类或回归)。云将在没有任何用户干预的情况下训练机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Janus: supporting heterogeneous power management in virtualized environments On-demand virtualization for live migration in bare metal cloud Preserving I/O prioritization in virtualized OSes To edge or not to edge? Indy: a software system for the dense cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1