OPTIMIZATION OF A TRAVELING WAVE SUPERCONDUCTING RADIOFREQUENCY CAVITY FOR UPGRADING THE INTERNATIONAL LINEAR COLLIDER

V. Shemelin, H. Padamsee, V. Yakovlev
{"title":"OPTIMIZATION OF A TRAVELING WAVE SUPERCONDUCTING RADIOFREQUENCY CAVITY FOR UPGRADING THE INTERNATIONAL LINEAR COLLIDER","authors":"V. Shemelin, H. Padamsee, V. Yakovlev","doi":"10.2172/1779488","DOIUrl":null,"url":null,"abstract":"The Standing Wave (SW) TESLA niobium-based superconducting radio frequency structure is limited to an accelerating gradient of about 50 MV/m by the critical RF magnetic field. To break through this barrier, we explore the option of niobium-based traveling wave (TW) structures. Optimization of TW structures was done considering experimentally known limiting electric and magnetic fields. It is shown that a TW structure can have an accelerating gradient above 70 MeV/m that is about 1.5 times higher than contemporary standing wave structures with the same critical magnetic field. The other benefit of TW structures shown is R/Q about 2 times higher than TESLA structure that reduces the dynamic heat load by a factor of 2. A method is proposed how to make TW structures multipactor-free. Some design proposals are offered to facilitate fabrication. Further increase of the real-estate gradient (equivalent to 80 MV/m active gradient) is also possible by increasing the length of the accelerating structure because of higher group velocity and cell-to-cell coupling. Realization of this work opens paths to ILC energy upgrades beyond 1 TeV to 3 TeV in competition with CLIC. The paper will discuss corresponding opportunities and challenges.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1779488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Standing Wave (SW) TESLA niobium-based superconducting radio frequency structure is limited to an accelerating gradient of about 50 MV/m by the critical RF magnetic field. To break through this barrier, we explore the option of niobium-based traveling wave (TW) structures. Optimization of TW structures was done considering experimentally known limiting electric and magnetic fields. It is shown that a TW structure can have an accelerating gradient above 70 MeV/m that is about 1.5 times higher than contemporary standing wave structures with the same critical magnetic field. The other benefit of TW structures shown is R/Q about 2 times higher than TESLA structure that reduces the dynamic heat load by a factor of 2. A method is proposed how to make TW structures multipactor-free. Some design proposals are offered to facilitate fabrication. Further increase of the real-estate gradient (equivalent to 80 MV/m active gradient) is also possible by increasing the length of the accelerating structure because of higher group velocity and cell-to-cell coupling. Realization of this work opens paths to ILC energy upgrades beyond 1 TeV to 3 TeV in competition with CLIC. The paper will discuss corresponding opportunities and challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
国际直线对撞机升级用行波超导射频腔的优化设计
驻波(SW) TESLA铌基超导射频结构受临界射频磁场的限制,加速梯度约为50 MV/m。为了突破这一障碍,我们探索了铌基行波结构的选择。考虑实验已知的极限电场和极限磁场,对TW结构进行了优化。结果表明,在临界磁场相同的情况下,TW结构的加速梯度可以达到70mev /m以上,是当代驻波结构的1.5倍左右。TW结构的另一个好处是R/Q比TESLA结构高约2倍,将动态热负荷降低了2倍。提出了一种使TW结构无多因子的方法。提出了一些便于制作的设计方案。由于更高的群速度和细胞间耦合,通过增加加速结构的长度也可以进一步增加面积梯度(相当于80 MV/m的有源梯度)。这项工作的实现为与CLIC竞争的ILC能量从1 TeV升级到3 TeV开辟了道路。本文将讨论相应的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a 50 MeV LPA-based Injector at ATHENA for a Compact Storage Ring An Upgrade Path for the Fermilab Accelerator Complex Machine Learning-Based Direct Solver for One-To-Many Problems on Temporal Shaping of Electron Beams Adaptive Deep Learning for Time-Varying Systems With Hidden Parameters: Predicting Changing Input Beam Distributions of Compact Particle Accelerators Comment on “Fast-slow mode coupling instability for coasting beams in the presence of detuning impedance”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1