EQUALITY OF LS AND AITKEN ESTIMATIONS OF THE HIGHER COEFFICIENT OF THE LINEAR REGRESSION MODEL IN THE CASE OF CORRELATED DEVIATIONS

M. Savkina
{"title":"EQUALITY OF LS AND AITKEN ESTIMATIONS OF THE HIGHER COEFFICIENT OF THE LINEAR REGRESSION MODEL IN THE CASE OF CORRELATED DEVIATIONS","authors":"M. Savkina","doi":"10.17721/2706-9699.2021.2.06","DOIUrl":null,"url":null,"abstract":"At the paper a linear regression model whose function has the form $f(x) = ax + b$, $a$ and $b$ — unknown parameters, is studied. Approximate values (observations) of functions $f(x)$ are registered at equidistant points $x_0$, $x_1$,..., $x_n$ of a line segment. It is also assumed that the covariance matrix of deviations is the Toeplitz matrix. Among all Toeplitz matrices, a family of matrices is selected for which all diagonals parallel to the main, starting from the (k +1)-th, are zero, $k = n/2$, $n$ — even. Elements of the main diagonal are denoted by $λ$, elements of the k-th diagonal are denoted by $c$, elements of the j-th diagonal are denoted by $c_{k−j}$ , $j = 1, 2,..., k − 1$. The theorem proved at the paper states that if $c_j = (k/(k + 1))^j c$, $j = 1, 2,..., k−1$, that the LS estimation and the Aitken estimation of the $a$ parameter of this model coincide for any values $λ$ and $c$, which provide the positive definiteness of the resulting matrix.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"123 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2021.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

At the paper a linear regression model whose function has the form $f(x) = ax + b$, $a$ and $b$ — unknown parameters, is studied. Approximate values (observations) of functions $f(x)$ are registered at equidistant points $x_0$, $x_1$,..., $x_n$ of a line segment. It is also assumed that the covariance matrix of deviations is the Toeplitz matrix. Among all Toeplitz matrices, a family of matrices is selected for which all diagonals parallel to the main, starting from the (k +1)-th, are zero, $k = n/2$, $n$ — even. Elements of the main diagonal are denoted by $λ$, elements of the k-th diagonal are denoted by $c$, elements of the j-th diagonal are denoted by $c_{k−j}$ , $j = 1, 2,..., k − 1$. The theorem proved at the paper states that if $c_j = (k/(k + 1))^j c$, $j = 1, 2,..., k−1$, that the LS estimation and the Aitken estimation of the $a$ parameter of this model coincide for any values $λ$ and $c$, which provide the positive definiteness of the resulting matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在相关偏差情况下,线性回归模型较高系数的ls和Aitken估计的相等性
本文研究了函数形式为$f(x) = ax + b$, $a$和$b$ -未知参数的线性回归模型。函数$f(x)$的近似值(观测值)在等距点$x_0$, $x_1$,…, $x_n$为线段。并假设偏差的协方差矩阵为Toeplitz矩阵。在所有Toeplitz矩阵中,选择一组矩阵,其中从(k +1)-th开始,所有平行于主矩阵的对角线均为零,$k = n/2$, $n$ -偶数。主对角线上的元素记为$λ$,第k条对角线上的元素记为$c$,第j条对角线上的元素记为$c_{k−j}$, $j = 1,2,…, k−1$。本文证明了如果$c_j = (k/(k + 1))^ jc $, $j = 1,2,…, k−1$,使得该模型参数$a$的LS估计和Aitken估计对于任意值$λ$和$c$重合,从而提供了结果矩阵的正确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BOUNDARY VALUE PROBLEMS FOR THE LYAPUNOV EQUATION THE REGULARIZED OPERATOR EXTRAPOLATION ALGORITHM ANALYSIS OF THE CONSTRUCTION OF NUMERICAL METHODS FOR SOLVING THE RICHARDS–KLUTE EQUATION NETWORK FLOW ANALYSIS AS A METHOD OF SUPPLY CHAIN MANAGEMENT OPTIMIZATION EXISTENCE IN SCHWARTZ SPACE AND SOLUTIONS PROPERTIES OF THE HOPF–TYPE EQUATION WITH VARIABLE COEFFICIENTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1