Zheyuan Cheng, M. Chow, Daebong Jung, Jinyong Jeon
{"title":"A big data based deep learning approach for vehicle speed prediction","authors":"Zheyuan Cheng, M. Chow, Daebong Jung, Jinyong Jeon","doi":"10.1109/ISIE.2017.8001278","DOIUrl":null,"url":null,"abstract":"Vehicle speed prediction plays an important role in Data-Driven Intelligent Transportation System (D2ITS) and electric vehicle energy management. Accurately predicting vehicle speed for an individual trip is a challenging topic because vehicle speed is subjected to various factors such as route types, route curvature, driver behavior, weather and traffic condition. A big data based deep learning vehicle speed prediction algorithm featuring big data analytics and Adaptive Neuro-Fuzzy Inference System (ANFIS) is presented in this paper. Big data analytics examines copious amounts of speed related data to identify the pattern and correlation between input factors and vehicle speed. ANFIS model is constructed and configured, based on the analytics. The proposed speed prediction algorithm is trained and evaluated using the actual driving data collected by one test driver. Experiment results indicate that the proposed algorithm is capable of accurately predicting vehicle speed for both freeway and urban traffic networks.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"2016 1","pages":"389-394"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Vehicle speed prediction plays an important role in Data-Driven Intelligent Transportation System (D2ITS) and electric vehicle energy management. Accurately predicting vehicle speed for an individual trip is a challenging topic because vehicle speed is subjected to various factors such as route types, route curvature, driver behavior, weather and traffic condition. A big data based deep learning vehicle speed prediction algorithm featuring big data analytics and Adaptive Neuro-Fuzzy Inference System (ANFIS) is presented in this paper. Big data analytics examines copious amounts of speed related data to identify the pattern and correlation between input factors and vehicle speed. ANFIS model is constructed and configured, based on the analytics. The proposed speed prediction algorithm is trained and evaluated using the actual driving data collected by one test driver. Experiment results indicate that the proposed algorithm is capable of accurately predicting vehicle speed for both freeway and urban traffic networks.