Online handwritten Gujarati character recognition using SVM, MLP, and K-NN

V. A. Naik, A. Desai
{"title":"Online handwritten Gujarati character recognition using SVM, MLP, and K-NN","authors":"V. A. Naik, A. Desai","doi":"10.1109/ICCCNT.2017.8203926","DOIUrl":null,"url":null,"abstract":"In this paper, we present a system to recognize online handwritten character for the Gujarati language. Support Vector Machine (SVM) with linear, polynomial & RBF kernel, k-Nearest Neighbor (k-NN) with different values of k and multi-layer perceptron (MLP) are used to classify strokes using hybrid feature set. This system is trained using a dataset of 3000 samples and tested by 100 different writers. We have achieved highest accuracy of 91.63% with SVM-RBF kernel and lowest accuracy of 86.72% with MLP. We have achieved minimum average processing time of 0.056 seconds per stroke with SVM linear kernel and maximum average processing time of 1.062 seconds per stroke with MLP.","PeriodicalId":6581,"journal":{"name":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","volume":"14 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2017.8203926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this paper, we present a system to recognize online handwritten character for the Gujarati language. Support Vector Machine (SVM) with linear, polynomial & RBF kernel, k-Nearest Neighbor (k-NN) with different values of k and multi-layer perceptron (MLP) are used to classify strokes using hybrid feature set. This system is trained using a dataset of 3000 samples and tested by 100 different writers. We have achieved highest accuracy of 91.63% with SVM-RBF kernel and lowest accuracy of 86.72% with MLP. We have achieved minimum average processing time of 0.056 seconds per stroke with SVM linear kernel and maximum average processing time of 1.062 seconds per stroke with MLP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线手写古吉拉特字符识别使用支持向量机,MLP,和K-NN
在本文中,我们提出了一个古吉拉特语在线手写体字符识别系统。采用线性、多项式和RBF核的支持向量机(SVM)、不同k值的k-近邻(k- nn)和多层感知器(MLP)进行混合特征集的笔画分类。该系统使用3000个样本的数据集进行训练,并由100个不同的作者进行测试。SVM-RBF kernel的准确率最高为91.63%,MLP的准确率最低为86.72%。我们已经实现了SVM线性核每冲程的最小平均处理时间为0.056秒,MLP每冲程的最大平均处理时间为1.062秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of energy optimization in wireless sensor networks based on efficient protocols with algorithms An Improved Dark Channel Prior for Fast Dehazing of Outdoor Images A Survey on Emerging Technologies in Wireless Body Area Network Identity Management in IoT using Blockchain Ad Service Detection - A Comparative Study Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1