An image registration approach to study the convergence of particle swarm optimization algorithm with non-linear inertia weight variation

Sanjeev Saxena, M. Pohit
{"title":"An image registration approach to study the convergence of particle swarm optimization algorithm with non-linear inertia weight variation","authors":"Sanjeev Saxena, M. Pohit","doi":"10.1109/ICCCNT.2017.8204075","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in the algorithm is very important as it balances the exploration and exploitation of the algorithm. Many variations of the parameter have been reported in the literature where a linearly decreasing inertia weight was found to be the best choice for most of the problems. In this work we have used several non-linear variations in the inertia weight (not used earlier) and developed the algorithm for the image registration problem of two mutually translated images. For each run of the algorithm, the increments of fitness function and hence the convergence of PSO is carefully monitored and compared with standard parameters.","PeriodicalId":6581,"journal":{"name":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2017.8204075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in the algorithm is very important as it balances the exploration and exploitation of the algorithm. Many variations of the parameter have been reported in the literature where a linearly decreasing inertia weight was found to be the best choice for most of the problems. In this work we have used several non-linear variations in the inertia weight (not used earlier) and developed the algorithm for the image registration problem of two mutually translated images. For each run of the algorithm, the increments of fitness function and hence the convergence of PSO is carefully monitored and compared with standard parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用图像配准方法研究具有非线性惯性权值变化的粒子群优化算法的收敛性
粒子群优化算法(PSO)是一种基于群的求解多模态优化问题的元启发式算法。算法中的惯性权重参数对算法的探索和利用起着重要的平衡作用。文献中已经报道了许多参数的变化,其中线性减小的惯性权重被发现是大多数问题的最佳选择。在这项工作中,我们使用了惯性权重的几种非线性变化(以前没有使用过),并开发了两幅相互翻译图像的图像配准问题的算法。对于算法的每次运行,仔细监测适应度函数的增量以及PSO的收敛性,并与标准参数进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of energy optimization in wireless sensor networks based on efficient protocols with algorithms An Improved Dark Channel Prior for Fast Dehazing of Outdoor Images A Survey on Emerging Technologies in Wireless Body Area Network Identity Management in IoT using Blockchain Ad Service Detection - A Comparative Study Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1