{"title":"Active Vibration Rejection in Multi Actuator Drives: Data Driven Approach","authors":"Prateek Shah, R. Horowitz","doi":"10.1115/dscc2019-8983","DOIUrl":null,"url":null,"abstract":"\n Multi Actuator Technology was unveiled in December 2017 by Seagate, a breakthrough that can double the data performance of the future generation hard disk drives. This technology will equip drives with dual actuators operating on the same pivot point. Each actuator will control half of the drives arms.\n This new technology brings new control challenges with it. Since two actuators operate independently on the same pivot timber, the control forces and torques generated by one actuator can affect the operation of the other actuator. The independent functioning of the two actuators will lead to a scenario of one actuator in the track seeking mode while the other actuator is in the track following mode. It is expected that the track seeking actuator will impart vibration onto the track following actuator, worsening its performance drastically.\n In this paper, we propose a methodology to estimate this imparted vibration and to design feedforward controllers for the voice coil motor and the micro actuator, of the track following actuator, to suppress the estimated vibration. The vibration estimation is performed using power spectral factorization techniques. Whereas, the feedforward controllers are designed using a mixed H2 – H∞ data driven methodology to obtain a robust design.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-8983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 7
Abstract
Multi Actuator Technology was unveiled in December 2017 by Seagate, a breakthrough that can double the data performance of the future generation hard disk drives. This technology will equip drives with dual actuators operating on the same pivot point. Each actuator will control half of the drives arms.
This new technology brings new control challenges with it. Since two actuators operate independently on the same pivot timber, the control forces and torques generated by one actuator can affect the operation of the other actuator. The independent functioning of the two actuators will lead to a scenario of one actuator in the track seeking mode while the other actuator is in the track following mode. It is expected that the track seeking actuator will impart vibration onto the track following actuator, worsening its performance drastically.
In this paper, we propose a methodology to estimate this imparted vibration and to design feedforward controllers for the voice coil motor and the micro actuator, of the track following actuator, to suppress the estimated vibration. The vibration estimation is performed using power spectral factorization techniques. Whereas, the feedforward controllers are designed using a mixed H2 – H∞ data driven methodology to obtain a robust design.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.