{"title":"Solid-Particles Flow Regimes in Air/Water Stratified Flow in a Horizontal Pipeline","authors":"Ramin Dabirian, R. Mohan, O. Shoham, G. Kouba","doi":"10.2118/174960-PA","DOIUrl":null,"url":null,"abstract":"There are a few studies covering solid-particles transport in multiphase pipelines. Solid-particles transport is complicated because it depends on several variables, including flow patterns, fluid properties, phase velocities, and pipe-geometry features such as roughness, diameter, and inclination angle. Each of these variables can have significant effects on the solid-particles-transport process. More attention has been paid recently to the importance of tracking solid-particles-transport management over reservoir life. There are three options available for managing solid-particles transport: applying a cleaning operation, installing solid-particles exclusion facilities, and operating above the critical solid-particles-deposition velocity. Cleaning operations, such as pigging, are only applicable for small amounts of solid particles, and they often result in the pig becoming stuck if the pigging frequency is not high enough. Installing solid-particles exclusion systems (e.g., gravel packs) can reduce production and create excessive pressure drops. The third option, operating above the critical solid-particles-deposition velocity, is preferred for solid-particles-production management as a prevention technique under favorable operating conditions because it has practical applications and can be beneficial commercially. To avoid solid-particles deposition, it is necessary to manage solid-particles transport above solid-particles-deposition velocities. On the other hand, operating under unnecessarily high flow rates is not only cost inefficient, but can also create facility damages; therefore, it is necessary to find the optimum velocity to maintain continuous particle movement. This velocity is called the critical solid-particles-deposition velocity.","PeriodicalId":19446,"journal":{"name":"Oil and gas facilities","volume":"196 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil and gas facilities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/174960-PA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
There are a few studies covering solid-particles transport in multiphase pipelines. Solid-particles transport is complicated because it depends on several variables, including flow patterns, fluid properties, phase velocities, and pipe-geometry features such as roughness, diameter, and inclination angle. Each of these variables can have significant effects on the solid-particles-transport process. More attention has been paid recently to the importance of tracking solid-particles-transport management over reservoir life. There are three options available for managing solid-particles transport: applying a cleaning operation, installing solid-particles exclusion facilities, and operating above the critical solid-particles-deposition velocity. Cleaning operations, such as pigging, are only applicable for small amounts of solid particles, and they often result in the pig becoming stuck if the pigging frequency is not high enough. Installing solid-particles exclusion systems (e.g., gravel packs) can reduce production and create excessive pressure drops. The third option, operating above the critical solid-particles-deposition velocity, is preferred for solid-particles-production management as a prevention technique under favorable operating conditions because it has practical applications and can be beneficial commercially. To avoid solid-particles deposition, it is necessary to manage solid-particles transport above solid-particles-deposition velocities. On the other hand, operating under unnecessarily high flow rates is not only cost inefficient, but can also create facility damages; therefore, it is necessary to find the optimum velocity to maintain continuous particle movement. This velocity is called the critical solid-particles-deposition velocity.