Soil Nutrient Detection using Genetic Algorithm

J. C. Puno, R. Bedruz, Allysa Kate M. Brillantes, R. R. Vicerra, A. Bandala, E. Dadios
{"title":"Soil Nutrient Detection using Genetic Algorithm","authors":"J. C. Puno, R. Bedruz, Allysa Kate M. Brillantes, R. R. Vicerra, A. Bandala, E. Dadios","doi":"10.1109/HNICEM48295.2019.9072689","DOIUrl":null,"url":null,"abstract":"Genetic Algorithm is the method used in this study in classifying the qualitative level of the soil nutrients. The data set includes images coming from the result of the soil testing. The extracted features were the HSV values and the LAB values color space. Out of the six extracted features from the data set, the B from LAB color space is the most linear so with that, it is the input of genetic algorithm in identifying the qualitative level of the soil nutrients. For the run of the program using python programming language and pyCharm CE as IDE, the values of each parameters follow: the population size is 10, mutation rate is 0.01, the number of cross over points is 2 and the maximum number of generations is 1000. The population’s final best fitness has 98.2609% that proves that Genetic Algorithm is an effective method in classifying the qualitative level of the soil nutrients.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Genetic Algorithm is the method used in this study in classifying the qualitative level of the soil nutrients. The data set includes images coming from the result of the soil testing. The extracted features were the HSV values and the LAB values color space. Out of the six extracted features from the data set, the B from LAB color space is the most linear so with that, it is the input of genetic algorithm in identifying the qualitative level of the soil nutrients. For the run of the program using python programming language and pyCharm CE as IDE, the values of each parameters follow: the population size is 10, mutation rate is 0.01, the number of cross over points is 2 and the maximum number of generations is 1000. The population’s final best fitness has 98.2609% that proves that Genetic Algorithm is an effective method in classifying the qualitative level of the soil nutrients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的土壤养分检测
遗传算法是本研究中对土壤养分质量水平进行分类的方法。数据集包括来自土壤测试结果的图像。提取的特征为HSV值和LAB值颜色空间。在从数据集中提取的六个特征中,LAB颜色空间中的B是最线性的,因此,它是遗传算法在识别土壤养分定性水平方面的输入。对于使用python编程语言和pyCharm CE作为IDE的程序运行,每个参数的值如下:种群大小为10,突变率为0.01,交叉点数为2,最大代数为1000。种群的最终最佳适应度为98.2609%,证明遗传算法是一种有效的土壤养分质量水平分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovations on Advanced Transportation Systems for Local Applications An Aquaculture-Based Binary Classifier for Fish Detection using Multilayer Artificial Neural Network Design and Analysis of Hip Joint DOFs for Lower Limb Robotic Exoskeleton Sum of Absolute Difference-based Rate-Distortion Optimization Cost Function for H.265/HEVC Intra-Mode Prediction Optimization and drying kinetics of the convective drying of microalgal biomat (lab-lab)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1