Domain-Adaptive generative adversarial networks for sketch-to-photo inversion

Yen-Cheng Liu, Wei-Chen Chiu, Sheng-De Wang, Y. Wang
{"title":"Domain-Adaptive generative adversarial networks for sketch-to-photo inversion","authors":"Yen-Cheng Liu, Wei-Chen Chiu, Sheng-De Wang, Y. Wang","doi":"10.1109/MLSP.2017.8168181","DOIUrl":null,"url":null,"abstract":"Generating photo-realistic images from multiple style sketches is one of challenging tasks in image synthesis with important applications such as facial composite for suspects. While machine learning techniques have been applied for solving this problem, the requirement of collecting sketch and face photo image pairs would limit the use of the learned model for rendering sketches of different styles. In this paper, we propose a novel deep learning model of Domain-adaptive Generative Adversarial Networks (DA-GAN). The design of DA-GAN performs cross-style sketch-to-photo inversion, which mitigates the difference across input sketch styles without the need to collect a large number of sketch and face image pairs for training purposes. In experiments, we show that our method is able to produce satisfactory results as well as performing favorably against state-of-the-art approaches.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"6 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Generating photo-realistic images from multiple style sketches is one of challenging tasks in image synthesis with important applications such as facial composite for suspects. While machine learning techniques have been applied for solving this problem, the requirement of collecting sketch and face photo image pairs would limit the use of the learned model for rendering sketches of different styles. In this paper, we propose a novel deep learning model of Domain-adaptive Generative Adversarial Networks (DA-GAN). The design of DA-GAN performs cross-style sketch-to-photo inversion, which mitigates the difference across input sketch styles without the need to collect a large number of sketch and face image pairs for training purposes. In experiments, we show that our method is able to produce satisfactory results as well as performing favorably against state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
领域自适应生成对抗网络用于草图到照片的反演
从多种风格的草图中生成逼真的图像是图像合成中具有挑战性的任务之一,具有重要的应用,如嫌疑犯的面部合成。虽然机器学习技术已经被应用于解决这个问题,但收集草图和人脸照片图像对的要求会限制学习模型在绘制不同风格草图时的使用。在本文中,我们提出了一种新的领域自适应生成对抗网络(DA-GAN)深度学习模型。DA-GAN的设计进行了跨风格的草图到照片的反演,这减少了输入草图风格之间的差异,而不需要收集大量的草图和人脸图像对进行训练。在实验中,我们表明我们的方法能够产生令人满意的结果,并且与最先进的方法相比表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1