Jacques Dauxois , Louis Ferré , Anne-Françoise Yao
{"title":"Un modèle semi-paramétrique pour variables aléatoires hilbertiennes","authors":"Jacques Dauxois , Louis Ferré , Anne-Françoise Yao","doi":"10.1016/S0764-4442(01)02163-2","DOIUrl":null,"url":null,"abstract":"<div><p>This Note deals with a semi-parametric model for Hilbertian random variables. The model is said semi-parametric by analogy with the finite dimensional case since the model involves a composition of any measurable mapping with a linear mapping which represents the “parametric” part. Under mild conditions, we derive a way for estimating this linear component in a particular case. We show that this method is actually a generalization of Li's Sliced Inverse Regression. However, in the Hilbertian context, SIR requires some adaptations of the estimation procedure and results concerning the consistency of the proposed estimates are given.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 10","pages":"Pages 947-952"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02163-2","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This Note deals with a semi-parametric model for Hilbertian random variables. The model is said semi-parametric by analogy with the finite dimensional case since the model involves a composition of any measurable mapping with a linear mapping which represents the “parametric” part. Under mild conditions, we derive a way for estimating this linear component in a particular case. We show that this method is actually a generalization of Li's Sliced Inverse Regression. However, in the Hilbertian context, SIR requires some adaptations of the estimation procedure and results concerning the consistency of the proposed estimates are given.