{"title":"INVESTIGATION OF FOCUSED ION BEAM IMPLANTATION PROFILE OF Ga+ IONS FOR APPLICATIONS IN SILICON PHOTONICS","authors":"F. Ay","doi":"10.18038/AUBTDA.471568","DOIUrl":null,"url":null,"abstract":"Use of focused ion beam (FIB) as a nanostructuring platform for fast prototype device development in the area of photonics has been attracting a considerable interest. In this study, we report a systematic investigation of focused ion beam (FIB) induced Ga+ ion implantation in silicon on insulator (SOI) structures. The local implantation of Ga+ ions during milling was studied for a wide range of ion doses, ranging from about 1014 to 1017 ions/cm2, using X-ray photoelectron spectroscopy (XPS). Ion implantation has been realized on identically sized areas for each dose by varying the FIB parameters such as dwell time and loop number. It was found that the most of the Ga+ is within the first 50 nm of Si. This suggests that it can be possible to potentially reduce optical losses caused by the ion implantation in any optical application. Methods such as thermal annealing and wet or dry chemical etching can result in removal of the 50 nm implanted layer of SOI, as a result removing the layer causing potentially high optical losses.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18038/AUBTDA.471568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Use of focused ion beam (FIB) as a nanostructuring platform for fast prototype device development in the area of photonics has been attracting a considerable interest. In this study, we report a systematic investigation of focused ion beam (FIB) induced Ga+ ion implantation in silicon on insulator (SOI) structures. The local implantation of Ga+ ions during milling was studied for a wide range of ion doses, ranging from about 1014 to 1017 ions/cm2, using X-ray photoelectron spectroscopy (XPS). Ion implantation has been realized on identically sized areas for each dose by varying the FIB parameters such as dwell time and loop number. It was found that the most of the Ga+ is within the first 50 nm of Si. This suggests that it can be possible to potentially reduce optical losses caused by the ion implantation in any optical application. Methods such as thermal annealing and wet or dry chemical etching can result in removal of the 50 nm implanted layer of SOI, as a result removing the layer causing potentially high optical losses.