Shixiong Zhang, Wenjing Shi, Zhipei Wu, Teng Zhang, Cheng Liu, Weijie Li
{"title":"Continuum damage dynamics of a large-scale flexible multibody system comprised of composite beams","authors":"Shixiong Zhang, Wenjing Shi, Zhipei Wu, Teng Zhang, Cheng Liu, Weijie Li","doi":"10.1177/14644193211063179","DOIUrl":null,"url":null,"abstract":"Herein, a continuum damage dynamic model of a large-scale flexible multibody system comprising composite beams is proposed based on the framework of the absolute nodal coordinate formulation. To accurately model the continuum damage dynamics of a multibody system, the Hashin criterion is adopted to describe damage initiation during dynamics. A type of nonlinear evolution law is used to characterize the value of material damage. Furthermore, a material stiffness degradation rule is introduced to describe the process of structural damage. A formulation for the damage element elastic force and its Jacobian are derived based on the second Piola–Kirchhoff stress tensor. Two dynamic numerical examples, including a deployment dynamic analysis of the spatial beam structural unit, are conducted to verify the availability and applicability of the proposed model.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193211063179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Herein, a continuum damage dynamic model of a large-scale flexible multibody system comprising composite beams is proposed based on the framework of the absolute nodal coordinate formulation. To accurately model the continuum damage dynamics of a multibody system, the Hashin criterion is adopted to describe damage initiation during dynamics. A type of nonlinear evolution law is used to characterize the value of material damage. Furthermore, a material stiffness degradation rule is introduced to describe the process of structural damage. A formulation for the damage element elastic force and its Jacobian are derived based on the second Piola–Kirchhoff stress tensor. Two dynamic numerical examples, including a deployment dynamic analysis of the spatial beam structural unit, are conducted to verify the availability and applicability of the proposed model.
期刊介绍:
The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.