POIsam: a System for Efficient Selection of Large-scale Geospatial Data on Maps

Tao Guo, Mingzhao Li, Peishan Li, Z. Bao, G. Cong
{"title":"POIsam: a System for Efficient Selection of Large-scale Geospatial Data on Maps","authors":"Tao Guo, Mingzhao Li, Peishan Li, Z. Bao, G. Cong","doi":"10.1145/3183713.3193549","DOIUrl":null,"url":null,"abstract":"In this demonstration we present POIsam, a visualization system supporting the following desirable features: representativeness, visibility constraint, zooming consistency, and panning consistency. The first two constraints aim to efficiently select a small set of representative objects from the current region of user's interest, and any two selected objects should not be too close to each other for users to distinguish in the limited space of a screen. One unique feature of POISam is that any similarity metrics can be plugged into POISam to meet the user's specific needs in different scenarios. The latter two consistencies are fundamental challenges to efficiently update the selection result w.r.t. user's zoom in, zoom out and panning operations when they interact with the map. POISam drops a common assumption from all previous work, i.e. the zoom levels and region cells are pre-defined and indexed, and objects are selected from such region cells at a particular zoom level rather than from user's current region of interest (which in most cases do not correspond to the pre-defined cells). It results in extra challenge as we need to do object selection via online computation. To our best knowledge, this is the first system that is able to meet all the four features to achieve an interactive visualization map exploration system.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3193549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this demonstration we present POIsam, a visualization system supporting the following desirable features: representativeness, visibility constraint, zooming consistency, and panning consistency. The first two constraints aim to efficiently select a small set of representative objects from the current region of user's interest, and any two selected objects should not be too close to each other for users to distinguish in the limited space of a screen. One unique feature of POISam is that any similarity metrics can be plugged into POISam to meet the user's specific needs in different scenarios. The latter two consistencies are fundamental challenges to efficiently update the selection result w.r.t. user's zoom in, zoom out and panning operations when they interact with the map. POISam drops a common assumption from all previous work, i.e. the zoom levels and region cells are pre-defined and indexed, and objects are selected from such region cells at a particular zoom level rather than from user's current region of interest (which in most cases do not correspond to the pre-defined cells). It results in extra challenge as we need to do object selection via online computation. To our best knowledge, this is the first system that is able to meet all the four features to achieve an interactive visualization map exploration system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POIsam:地图上大规模地理空间数据的高效选择系统
在本演示中,我们介绍了POIsam,这是一个支持以下理想特性的可视化系统:代表性、可见性约束、缩放一致性和平移一致性。前两个约束旨在有效地从用户当前感兴趣的区域中选择一小部分具有代表性的对象,并且在有限的屏幕空间中,任何两个被选择的对象都不能太近,以至于用户无法区分。POISam的一个独特特性是,任何相似度量都可以插入到POISam中,以满足用户在不同场景中的特定需求。后两种一致性是用户在与地图交互时进行放大、缩小和平移操作时有效更新选择结果的基本挑战。POISam从之前的所有工作中放弃了一个共同的假设,即缩放级别和区域单元都是预定义并索引的,并且对象是从特定缩放级别的这些区域单元中选择的,而不是从用户当前感兴趣的区域中选择的(在大多数情况下,这与预定义的单元不对应)。它带来了额外的挑战,因为我们需要通过在线计算来进行对象选择。据我们所知,这是第一个能够满足所有四个特征来实现交互式可视化地图探索系统的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1