Modeling and modal analysis of the structure of long-span transmission tower

K. Li, Rui Zhu, Zhenguo Wang, Xiaoyu Zhou, Ming-xue Wang, Siyu Xu, Yicheng Gong
{"title":"Modeling and modal analysis of the structure of long-span transmission tower","authors":"K. Li, Rui Zhu, Zhenguo Wang, Xiaoyu Zhou, Ming-xue Wang, Siyu Xu, Yicheng Gong","doi":"10.3233/jcm-226644","DOIUrl":null,"url":null,"abstract":"The structure of the long-span transmission tower is a typical nonlinear structure with the characteristics of great height, large line span, heavy overall weight and flexible tower body. The current design code only analyzes the traditional tower types, but the analysis of the truss structure of transmission tower is limited. Aiming at improving the design defects of the structure of long-span transmission towers, this paper uses the finite element software APDL to build the three-dimensional finite element model of a long-span transmission tower, to carry out the modal finite element analysis as well as to extract the specific parameters of each modal finite element mode: Modality, Natural frequency of vibration, Periodicity. The results show that the natural vibration period of the main machinery of this type of steel transmission tower is about 0.37–1.37 s; The structure of the long-span transmission tower has certain displacements in six degrees of freedom, in which the value of the X-dimensional displacement is the largest. There are some large displacements and local torsion in the high-order mode, combined with the results of modal analysis, so it is suggested to consider the structural improvement or external reinforcement of the weak parts of the long-span transmission tower.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"35 1","pages":"1491-1501"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The structure of the long-span transmission tower is a typical nonlinear structure with the characteristics of great height, large line span, heavy overall weight and flexible tower body. The current design code only analyzes the traditional tower types, but the analysis of the truss structure of transmission tower is limited. Aiming at improving the design defects of the structure of long-span transmission towers, this paper uses the finite element software APDL to build the three-dimensional finite element model of a long-span transmission tower, to carry out the modal finite element analysis as well as to extract the specific parameters of each modal finite element mode: Modality, Natural frequency of vibration, Periodicity. The results show that the natural vibration period of the main machinery of this type of steel transmission tower is about 0.37–1.37 s; The structure of the long-span transmission tower has certain displacements in six degrees of freedom, in which the value of the X-dimensional displacement is the largest. There are some large displacements and local torsion in the high-order mode, combined with the results of modal analysis, so it is suggested to consider the structural improvement or external reinforcement of the weak parts of the long-span transmission tower.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大跨度输电塔结构的建模与模态分析
大跨度输电塔结构是典型的非线性结构,具有高度大、线跨大、总重大、塔体柔性等特点。现行设计规范只对传统塔型进行了分析,对输电塔桁架结构的分析有限。针对大跨度输电塔结构的设计缺陷,本文利用有限元软件APDL建立了大跨度输电塔的三维有限元模型,进行了模态有限元分析,提取了各模态有限元模态的具体参数:模态、振动固有频率、周期性。结果表明:该型钢杆塔主体机械的自振周期约为0.37 ~ 1.37 s;大跨度输电塔结构在6个自由度内具有一定的位移,其中x维位移值最大。结合模态分析结果,高阶模态存在较大位移和局部扭转,建议考虑对大跨输电塔薄弱部位进行结构改进或外部加固。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retracted to: Design and dynamics simulation of vehicle active occupant restraint protection system Flip-OFDM Optical MIMO Based VLC System Using ML/DL Approach Using the Structure-Behavior Coalescence Method to Formalize the Action Flow Semantics of UML 2.0 Activity Diagrams Accurate Calibration and Scalable Bandwidth Sharing of Multi-Queue SSDs Looking to Personalize Gaze Estimation Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1