PERBANDINGAN LSTM DAN ELM DALAM MEMPREDIKSI HARGA PANGAN KOTA TASIKMALAYA

Andry Winata, Manatap Dolok Lauro, Teny Handhayani
{"title":"PERBANDINGAN LSTM DAN ELM DALAM MEMPREDIKSI HARGA PANGAN KOTA TASIKMALAYA","authors":"Andry Winata, Manatap Dolok Lauro, Teny Handhayani","doi":"10.24912/jiksi.v11i2.26015","DOIUrl":null,"url":null,"abstract":"Humans have needs that must be met, one of which is the need for food, but food prices often change. Factors that affect price changes occur because the amount of demand is high while the supply is small. Making predictions about price changes will be very helpful to get an idea of the pattern of price changes. Therefore making predictions from price patterns is useful for providing information to the public. Predictions regarding price changes can be made using many methods. Long Short-Term Memory (LSTM) and Extreme Learning Machine (ELM) are several methods that can be used to predict time series data, these two methods can provide an overview of the predictions made. The results of the study show that both algorithms have good results in terms of the the evaluation value. The evaluation results showed no significant difference between the two algorithms. The evaluation value of the rice commodity showed that ELM tended to be better with MAE values of 6,721, MAPE 0.061%, MSE 115,281, RMSE 10,737 and CV 3,699%, while LSTM with MAE 31,707, MAPE 0.286%, MSE 1927.633, RMSE 43.905 and CV 3.655%. However, for other commodities, LSTM can produce a better evaluation value.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"282 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sisfokom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24912/jiksi.v11i2.26015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Humans have needs that must be met, one of which is the need for food, but food prices often change. Factors that affect price changes occur because the amount of demand is high while the supply is small. Making predictions about price changes will be very helpful to get an idea of the pattern of price changes. Therefore making predictions from price patterns is useful for providing information to the public. Predictions regarding price changes can be made using many methods. Long Short-Term Memory (LSTM) and Extreme Learning Machine (ELM) are several methods that can be used to predict time series data, these two methods can provide an overview of the predictions made. The results of the study show that both algorithms have good results in terms of the the evaluation value. The evaluation results showed no significant difference between the two algorithms. The evaluation value of the rice commodity showed that ELM tended to be better with MAE values of 6,721, MAPE 0.061%, MSE 115,281, RMSE 10,737 and CV 3,699%, while LSTM with MAE 31,707, MAPE 0.286%, MSE 1927.633, RMSE 43.905 and CV 3.655%. However, for other commodities, LSTM can produce a better evaluation value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSTM和ELM之间的比较可以预测塔斯克马来亚市的食品价格
人类有必须满足的需求,其中之一就是对食物的需求,但食物价格经常变化。影响价格变化的因素是因为需求量大而供给量小。对价格变化作出预测对了解价格变化的规律很有帮助。因此,根据价格模式进行预测对于向公众提供信息是有用的。关于价格变化的预测可以用许多方法进行。长短期记忆(LSTM)和极限学习机(ELM)是几种可以用来预测时间序列数据的方法,这两种方法可以提供所做预测的概述。研究结果表明,两种算法在评价价值方面都取得了较好的效果。评价结果显示两种算法之间无显著差异。大米商品的评价值表明,ELM的MAE值为6721,MAPE值为0.061%,MSE值为115281,RMSE值为10737,CV值为3699%,而LSTM的MAE值为31707,MAPE值为0.286%,MSE值为1927.633,RMSE值为43.905,CV值为3.655%。而对于其他商品,LSTM可以产生更好的评价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
40
审稿时长
8 weeks
期刊最新文献
Identifying Credit Card Fraud in Illegal Transactions Using Random Forest and Decision Tree Algorithms Determining Scholarship Recipients at STIT Prabumulih Using the AHP Method Determining Promotional Package Recommendations Using the Frequent Pattern Growth Algorithm at The Java Cafe Systematic Literature Review: Machine Learning Methods in Emotion Classification in Textual Data Heart Chamber Segmentation in Cardiomegaly Conditions Using the CNN Method with U-Net Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1