NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer.

Q3 Mathematics Abstract and Applied Analysis Pub Date : 2022-05-17 DOI:10.1093/gigascience/giac037
Mohamed Amgad, Lamees A Atteya, Hagar Hussein, Kareem Hosny Mohammed, Ehab Hafiz, Maha A T Elsebaie, Ahmed M Alhusseiny, Mohamed Atef AlMoslemany, Abdelmagid M Elmatboly, Philip A Pappalardo, Rokia Adel Sakr, Pooya Mobadersany, Ahmad Rachid, Anas M Saad, Ahmad M Alkashash, Inas A Ruhban, Anas Alrefai, Nada M Elgazar, Ali Abdulkarim, Abo-Alela Farag, Amira Etman, Ahmed G Elsaeed, Yahya Alagha, Yomna A Amer, Ahmed M Raslan, Menatalla K Nadim, Mai A T Elsebaie, Ahmed Ayad, Liza E Hanna, Ahmed Gadallah, Mohamed Elkady, Bradley Drumheller, David Jaye, David Manthey, David A Gutman, Habiba Elfandy, Lee A D Cooper
{"title":"NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer.","authors":"Mohamed Amgad, Lamees A Atteya, Hagar Hussein, Kareem Hosny Mohammed, Ehab Hafiz, Maha A T Elsebaie, Ahmed M Alhusseiny, Mohamed Atef AlMoslemany, Abdelmagid M Elmatboly, Philip A Pappalardo, Rokia Adel Sakr, Pooya Mobadersany, Ahmad Rachid, Anas M Saad, Ahmad M Alkashash, Inas A Ruhban, Anas Alrefai, Nada M Elgazar, Ali Abdulkarim, Abo-Alela Farag, Amira Etman, Ahmed G Elsaeed, Yahya Alagha, Yomna A Amer, Ahmed M Raslan, Menatalla K Nadim, Mai A T Elsebaie, Ahmed Ayad, Liza E Hanna, Ahmed Gadallah, Mohamed Elkady, Bradley Drumheller, David Jaye, David Manthey, David A Gutman, Habiba Elfandy, Lee A D Cooper","doi":"10.1093/gigascience/giac037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the foundation of interpretable machine-learning models for computational pathology. However, generating adequate labels for these structures is a critical barrier, given the time and effort required from pathologists.</p><p><strong>Results: </strong>This article describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce quality labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing >220,000 annotations of cell nuclei in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation dataset for training that is the largest such resource for multi-scale analysis of breast cancer histology. This article presents data and analysis results for single and multi-rater annotations from both non-experts and pathologists. We present a novel workflow that uses algorithmic suggestions to collect accurate segmentation data without the need for laborious manual tracing of nuclei. Our results indicate that even noisy algorithmic suggestions do not adversely affect pathologist accuracy and can help non-experts improve annotation quality. We also present a new approach for inferring truth from multiple raters and show that non-experts can produce accurate annotations for visually distinctive classes.</p><p><strong>Conclusions: </strong>This study is the most extensive systematic exploration of the large-scale use of wisdom-of-the-crowd approaches to generate data for computational pathology applications.</p>","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giac037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the foundation of interpretable machine-learning models for computational pathology. However, generating adequate labels for these structures is a critical barrier, given the time and effort required from pathologists.

Results: This article describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce quality labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing >220,000 annotations of cell nuclei in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation dataset for training that is the largest such resource for multi-scale analysis of breast cancer histology. This article presents data and analysis results for single and multi-rater annotations from both non-experts and pathologists. We present a novel workflow that uses algorithmic suggestions to collect accurate segmentation data without the need for laborious manual tracing of nuclei. Our results indicate that even noisy algorithmic suggestions do not adversely affect pathologist accuracy and can help non-experts improve annotation quality. We also present a new approach for inferring truth from multiple raters and show that non-experts can produce accurate annotations for visually distinctive classes.

Conclusions: This study is the most extensive systematic exploration of the large-scale use of wisdom-of-the-crowd approaches to generate data for computational pathology applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NuCLS:用于乳腺癌细胞核分类和分割的可扩展众包方法和数据集。
背景:深度学习能准确绘制细胞和组织结构的高分辨率图谱,可作为计算病理学可解释机器学习模型的基础。然而,鉴于病理学家需要花费大量时间和精力,为这些结构生成适当的标签是一个关键障碍:本文介绍了一种新颖的合作框架,它能让医学生和病理学家共同参与,为细胞核生成高质量的标签。我们使用这种方法制作了 NuCLS 数据集,其中包含超过 22 万个乳腺癌细胞核注释。该数据集建立在之前的组织区域标注工作基础之上,是用于乳腺癌组织学多尺度分析的最大资源。本文介绍了来自非专业人员和病理学家的单人和多人注释的数据和分析结果。我们介绍了一种新颖的工作流程,该流程利用算法建议来收集准确的分割数据,而无需费力地人工追踪细胞核。我们的研究结果表明,即使是嘈杂的算法建议也不会对病理学家的准确性产生不利影响,并能帮助非专业人员提高注释质量。我们还提出了一种从多个评分者中推断真相的新方法,并表明非专业人员也能为视觉上独特的类别做出准确的注释:这项研究是对大规模使用群体智慧方法生成计算病理学应用数据的最广泛的系统性探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
期刊最新文献
Multiplicity of Solutions for a Class of Kirchhoff–Poisson Type Problem Frequently Hypercyclic Semigroup Generated by Some Partial Differential Equations with Delay Operator The Solvability and Explicit Solutions of Singular Integral–Differential Equations with Reflection Efficient Numerical Method for Solving a Quadratic Riccati Differential Equation A Complex Dynamic of an Eco-Epidemiological Mathematical Model with Migration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1