I'm Only Unhappy when it Rains: Forecasting Mobile QoS with Weather Conditions

Diego Madariaga, Martín Panza, Javier Bustos-Jiménez
{"title":"I'm Only Unhappy when it Rains: Forecasting Mobile QoS with Weather Conditions","authors":"Diego Madariaga, Martín Panza, Javier Bustos-Jiménez","doi":"10.23919/TMA.2018.8506509","DOIUrl":null,"url":null,"abstract":"Global increase in the use of mobile Internet service generates interest in mobile network studies to determine and forecast the QoS provided by mobile operators. This study proposes different methods to forecast signal strength, one of the most important mobile Internet QoS indicator, based on time series analysis and considering external information about weather conditions as temperature, humidity and precipitations due to the effect they cause on mobile Internet QoS. This work shows the feasibility of forecasting mobile signal strength using crowd data corresponding to mobile devices in Santiago, Chile and that the inclusion of weather information generates more accurate forecast models for a given geographic area, obtaining good performance by all models used at comparing their forecast error values for weekly predictions. To the best of the authors' knowledge this is the first attempt of using weather information together with real data gathered from user devices in order to forecast mobile signal strength.","PeriodicalId":6607,"journal":{"name":"2018 Network Traffic Measurement and Analysis Conference (TMA)","volume":"50 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2018.8506509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Global increase in the use of mobile Internet service generates interest in mobile network studies to determine and forecast the QoS provided by mobile operators. This study proposes different methods to forecast signal strength, one of the most important mobile Internet QoS indicator, based on time series analysis and considering external information about weather conditions as temperature, humidity and precipitations due to the effect they cause on mobile Internet QoS. This work shows the feasibility of forecasting mobile signal strength using crowd data corresponding to mobile devices in Santiago, Chile and that the inclusion of weather information generates more accurate forecast models for a given geographic area, obtaining good performance by all models used at comparing their forecast error values for weekly predictions. To the best of the authors' knowledge this is the first attempt of using weather information together with real data gathered from user devices in order to forecast mobile signal strength.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我只在下雨的时候不高兴:用天气条件预测移动服务质量
全球移动互联网服务使用的增加引起了对移动网络研究的兴趣,以确定和预测移动运营商提供的QoS。信号强度是移动互联网最重要的QoS指标之一,本研究基于时间序列分析,考虑温度、湿度、降水等外部天气条件信息对移动互联网QoS的影响,提出了不同的预测方法。这项工作表明,利用智利圣地亚哥移动设备对应的人群数据预测移动信号强度是可行的,并且天气信息的包含为给定地理区域产生了更准确的预测模型,在比较每周预测的预测误差值时,所有模型都获得了良好的表现。据作者所知,这是第一次尝试将天气信息与从用户设备收集的真实数据结合起来,以预测移动信号强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Analysis of Network Measurements Through Machine Learning: The Power of the Crowd App for Dynamic Crowdsourced QoE Studies of HTTP Adaptive Streaming on Mobile Devices Dmap: Automating Domain Name Ecosystem Measurements and Applications Anycaston the Move: A Look at Mobile Anycast Performance A Second Screen Journey to the Cup: Twitter Dynamics During the Stanley Cup Playoffs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1