Patrick Kreutzer, Georg Dotzler, M. Ring, B. Eskofier, M. Philippsen
{"title":"Automatic Clustering of Code Changes","authors":"Patrick Kreutzer, Georg Dotzler, M. Ring, B. Eskofier, M. Philippsen","doi":"10.1145/2901739.2901749","DOIUrl":null,"url":null,"abstract":"Several research tools and projects require groups of similar code changes asinput. Examples are recommendation and bug finding tools that can providevaluable information to developers based on such data. With the help ofsimilar code changes they can simplify the application of bug fixes and codechanges to multiple locations in a project. But despite their benefit, thepractical value of existing tools is limited, as users need to manually specifythe input data, i.e., the groups of similar code changes.To overcome this drawback, this paper presents and evaluates two syntacticalsimilarity metrics, one of them is specifically designed to run fast, incombination with two carefully selected and self-tuning clustering algorithmsto automatically detect groups of similar code changes.We evaluate the combinations of metrics and clustering algorithms by applyingthem to several open source projects and also publish the detected groups ofsimilar code changes online as a reference dataset. The automatically detectedgroups of similar code changes work well when used as input for LASE, arecommendation system for code changes.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"298 1","pages":"61-72"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901739.2901749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Several research tools and projects require groups of similar code changes asinput. Examples are recommendation and bug finding tools that can providevaluable information to developers based on such data. With the help ofsimilar code changes they can simplify the application of bug fixes and codechanges to multiple locations in a project. But despite their benefit, thepractical value of existing tools is limited, as users need to manually specifythe input data, i.e., the groups of similar code changes.To overcome this drawback, this paper presents and evaluates two syntacticalsimilarity metrics, one of them is specifically designed to run fast, incombination with two carefully selected and self-tuning clustering algorithmsto automatically detect groups of similar code changes.We evaluate the combinations of metrics and clustering algorithms by applyingthem to several open source projects and also publish the detected groups ofsimilar code changes online as a reference dataset. The automatically detectedgroups of similar code changes work well when used as input for LASE, arecommendation system for code changes.