H. Tian, J. Melillo, D. Kicklighter, A. McGuire, John V. K. Helfrich
{"title":"The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States","authors":"H. Tian, J. Melillo, D. Kicklighter, A. McGuire, John V. K. Helfrich","doi":"10.3402/TELLUSB.V51I2.16318","DOIUrl":null,"url":null,"abstract":"We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere–biosphere program to investigate how increasing atmospheric CO 2 concentration and climate variability during 1900–1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO 2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO 2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO 2 and climate variability are not additive. Interactions among CO 2 , temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO 2 as a result of wetter weather and higher atmospheric CO 2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr −1 because of the combined effect of increasing atmospheric CO 2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7 Pg C) reduction in total carbon storage from that estimated for potential vegetation. The carbon sink capacity of natural terrestrial ecosystems in the conterminous US is about 69% of that estimated for potential vegetation. DOI: 10.1034/j.1600-0889.1999.00021.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"32 1","pages":"414-452"},"PeriodicalIF":2.3000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"190","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I2.16318","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 190
Abstract
We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere–biosphere program to investigate how increasing atmospheric CO 2 concentration and climate variability during 1900–1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO 2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO 2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO 2 and climate variability are not additive. Interactions among CO 2 , temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO 2 as a result of wetter weather and higher atmospheric CO 2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr −1 because of the combined effect of increasing atmospheric CO 2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7 Pg C) reduction in total carbon storage from that estimated for potential vegetation. The carbon sink capacity of natural terrestrial ecosystems in the conterminous US is about 69% of that estimated for potential vegetation. DOI: 10.1034/j.1600-0889.1999.00021.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.