Scalable diffusion-aware optimization of network topology

Elias Boutros Khalil, B. Dilkina, Le Song
{"title":"Scalable diffusion-aware optimization of network topology","authors":"Elias Boutros Khalil, B. Dilkina, Le Song","doi":"10.1145/2623330.2623704","DOIUrl":null,"url":null,"abstract":"How can we optimize the topology of a networked system to bring a flu under control, propel a video to popularity, or stifle a network malware in its infancy? Previous work on information diffusion has focused on modeling the diffusion dynamics and selecting nodes to maximize/minimize influence. Only a paucity of recent studies have attempted to address the network modification problems, where the goal is to either facilitate desirable spreads or curtail undesirable ones by adding or deleting a small subset of network nodes or edges. In this paper, we focus on the widely studied linear threshold diffusion model, and prove, for the first time, that the network modification problems under this model have supermodular objective functions. This surprising property allows us to design efficient data structures and scalable algorithms with provable approximation guarantees, despite the hardness of the problems in question. Both the time and space complexities of our algorithms are linear in the size of the network, which allows us to experiment with millions of nodes and edges. We show that our algorithms outperform an array of heuristics in terms of their effectiveness in controlling diffusion processes, often beating the next best by a significant margin.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

Abstract

How can we optimize the topology of a networked system to bring a flu under control, propel a video to popularity, or stifle a network malware in its infancy? Previous work on information diffusion has focused on modeling the diffusion dynamics and selecting nodes to maximize/minimize influence. Only a paucity of recent studies have attempted to address the network modification problems, where the goal is to either facilitate desirable spreads or curtail undesirable ones by adding or deleting a small subset of network nodes or edges. In this paper, we focus on the widely studied linear threshold diffusion model, and prove, for the first time, that the network modification problems under this model have supermodular objective functions. This surprising property allows us to design efficient data structures and scalable algorithms with provable approximation guarantees, despite the hardness of the problems in question. Both the time and space complexities of our algorithms are linear in the size of the network, which allows us to experiment with millions of nodes and edges. We show that our algorithms outperform an array of heuristics in terms of their effectiveness in controlling diffusion processes, often beating the next best by a significant margin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络拓扑的可扩展扩散感知优化
我们如何优化网络系统的拓扑结构来控制流感,推动视频流行,或者扼杀网络恶意软件的萌芽期?以往关于信息扩散的工作主要集中在建模扩散动力学和选择节点以最大化/最小化影响。最近只有少数研究试图解决网络修改问题,其目标是通过添加或删除一小部分网络节点或边来促进理想的传播或减少不希望的传播。本文研究了目前广泛研究的线性阈值扩散模型,并首次证明了该模型下的网络修正问题具有超模目标函数。这个令人惊讶的性质允许我们设计有效的数据结构和可扩展的算法,并具有可证明的近似保证,尽管所讨论的问题很困难。我们的算法的时间和空间复杂性在网络的大小上都是线性的,这使得我们可以用数百万个节点和边缘进行实验。我们表明,我们的算法在控制扩散过程的有效性方面优于一系列启发式算法,通常以显着的幅度击败下一个最佳算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1