{"title":"Design, Simulation, and Fabrication of a Novel Vibration-Based Magnetic Energy Harvesting Device","authors":"T. Chung, Dong-Gun Lee, M. Ujihara, G. Carman","doi":"10.1109/SENSOR.2007.4300268","DOIUrl":null,"url":null,"abstract":"In this paper, we have described a vibration-based magnetic energy harvesting device (VMEHD). The VMEHD converts mechanical energy from the environment to electrical energy by using the piezoelectric effect and frequency rectification. Magnetic arrays are used to rectify the incoming frequency to a higher frequency using non-contact mechanisms. The finite element analysis is used to simulate the VMEHD. Testing results show that the output voltage is between 8 volts to 12 volts with input frequency of 10 Hz and a rectified frequency of 22 Hz. This provides large power densities to be obtained in a mechanical energy harvesting device.","PeriodicalId":23295,"journal":{"name":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"1 1","pages":"867-870"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2007.4300268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
In this paper, we have described a vibration-based magnetic energy harvesting device (VMEHD). The VMEHD converts mechanical energy from the environment to electrical energy by using the piezoelectric effect and frequency rectification. Magnetic arrays are used to rectify the incoming frequency to a higher frequency using non-contact mechanisms. The finite element analysis is used to simulate the VMEHD. Testing results show that the output voltage is between 8 volts to 12 volts with input frequency of 10 Hz and a rectified frequency of 22 Hz. This provides large power densities to be obtained in a mechanical energy harvesting device.