{"title":"Carbon dioxide enrichment, transpiration and 1-aminocyclopropane-1-carboxylic acid-dependent ethylene release from oat leaves","authors":"Roger F. Horton, Barry J. Saville","doi":"10.1016/0304-4211(84)90247-5","DOIUrl":null,"url":null,"abstract":"<div><p>Enrichment of air with carbon dioxide up to 1200 μl ṡ 1<sup>−1</sup> air results in lower transpiration rates from oat (<em>Avena sativa</em>) seedling leaves held in the light at 30% relative humidity. Carbon dioxide treatment also enhances the release of ethylene from leaves treated with 1-aminocyclopropane-1-carboxylic acid (ACC). Thus, while the uptake of ACC via the transpiration stream is depressed by 33% by carbon dioxide enrichment, the release of ethylene from a given amount of ACC is increased by 400%. Neither ethylene nor ACC appear to affect the transpiration rate. The enhancement of ACC-dependent ethylene release cannot be simply correlated with stomatal behaviour.</p></div>","PeriodicalId":20221,"journal":{"name":"Plant Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1984-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-4211(84)90247-5","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304421184902475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Enrichment of air with carbon dioxide up to 1200 μl ṡ 1−1 air results in lower transpiration rates from oat (Avena sativa) seedling leaves held in the light at 30% relative humidity. Carbon dioxide treatment also enhances the release of ethylene from leaves treated with 1-aminocyclopropane-1-carboxylic acid (ACC). Thus, while the uptake of ACC via the transpiration stream is depressed by 33% by carbon dioxide enrichment, the release of ethylene from a given amount of ACC is increased by 400%. Neither ethylene nor ACC appear to affect the transpiration rate. The enhancement of ACC-dependent ethylene release cannot be simply correlated with stomatal behaviour.